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ABSTRACT

Investigating the Corpus Phonetics Pipeline Applied to Diverse Speech Data
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Chair of the Supervisory Committee:

Gina-Anne Levow

Department of Linguistics

Corpus phonetics research has become increasingly large-scale as both data and automated

tools have become more plentiful and available. Now that there are resources to study more kinds

of data, what are some best practices in using these resources, especially when the data is di-

verse? This dissertation addresses the following research questions: How do we process diverse

speech data, and how much can we rely on automated tools to conduct corpus phonetics research?

The types of diversity covered in this work include multilingual and fieldwork corpora covering

styles including read, spontaneous, and code-switched speech. Across four studies, we show that

automated systems in the corpus phonetics pipeline are viable on multilingual and low-resource

datasets. We first propose a pipeline that utilizes automated systems that convert orthography to

phonemes, model the acoustics and align audio to those phonemes, and extract features for pho-

netic analysis. We apply this pipeline to a large, multilingual corpus and show both the utility and

limitations of this derivative corpus in a careful study of outlying phonetic features. Then, we apply

novel techniques to improve the phonetic forced alignment of low-resource field data, a challeng-

ing yet important process in language documentation. We encourage the research community to

continue developing tools to aid in language documentation and cross-linguistic research. In doing

so, it is important to include manual audits and to examine whether or not the tools are genuinely

modeling the data.
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CHAPTER 1

Introduction

1.1 Motivation

Corpus phonetics is the study of speech sounds within a large corpus, conducted with semiauto-

matic methods. Liberman (2019) stated that compared to standard phonetics research, corpus

phonetics methods provide the benefits of increased researcher productivity (as automation speeds

up manual labor), larger data coverage over a variety of speech patterns, and the ability to repro-

duce findings. Among his projections for what corpus phonetics may look like in the year 2030 was

that there would be “robot phoneticians,” if not phoneticians’ “robot assistants.” We support the

idea of a robot that can assist the phonetician in conducting research, which is how we portray the

use of automatic tools in this dissertation.

Large-scale, automated speech analysis can benefit the field in a variety of ways: a field linguist

can develop a spoken corpus with accompanying transcriptions of an endangered language for use

in natural language processing applications (Coto-Solano and Solórzano, 2017); a phonetician can

compare the effectiveness of remote recording methods on retaining accurate acoustic measures

(Oganyan et al., 2024); a sociolinguist can discover measurable vowel quality differences between

groups of speakers in a large corpus (Reddy and Stanford, 2015; Coto-Solano et al., 2021); and, a

typologist can test the degree to which analytic constraints may account for cross-linguistic patterns

in phonetic realization (Salesky et al., 2020). However, as linguists are increasingly relying on

automated tools for corpus phonetics research, one may ask how well these tools work to perform

reliable analyses.

Furthermore, one may ask how well these tools work on diverse, non-standard speech data.

Within a typical automated pipeline that involves grapheme-to-phoneme conversion, acoustic mod-

eling, forced alignment, and acoustic-phonetic measurement, these automated tools may prove

acceptable for some high-resource, well-studied language varieties such as Standard American En-
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glish. However, when the data is more diverse (e.g., limited in a low-resource setting, or the

language variety is less documented, or multiple varieties are used in a single utterance), it can

be more challenging to produce reliable output for linguistics research. This dissertation explores

how to utilize these automated tools in the corpus phonetics pipeline, especially in the context of

diverse speech data.

1.2 Research questions and contributions

This dissertation aims to show that there is a large benefit to including automatic processes in the

corpus phonetics pipeline. Using innovative methods and a careful, critical lens, these processes

can aid the research of diverse speech data. We frame the larger themes of this work into two

guiding research questions. We also present chapter-specific research questions, followed by the

contributions of how we answered these questions.

RQ1 Methodology: What methods are viable for processing diverse speech corpora within the

corpus phonetics pipeline?

(a) Chapter 3 (VoxCommunis): How do we process a large, multilingual read speech corpus

to make it usable for downstream phonetics research?

We applied grapheme-to-phoneme conversion, forced alignment, and formant extrac-

tion in a novel pipeline to process read speech data from Common Voice (Ardila

et al., 2020). We created a derivative corpus, VoxCommunis, for the purpose of

downstream phonetic analysis. We used this corpus for a phonetic typology study

that examined the uniformity of vowel realizations across 36 languages.

(b) Chapter 4 (Outliers): What does an audit of outliers from a corpus phonetics pipeline

reveal about our assumptions on the quality of automation? What can this audit reveal

about particular languages and data sources?

In auditing a set of outliers from two data sources across three languages, we observed

that the violations of automated quality assumptions demonstrated quirks of dataset

sources and revealed linguistic phenomena about Kazakh and Hausa.
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(c) Chapter 5 (Panãra): What is a good level of representation of sound units when conduct-

ing language-specific and cross-language forced alignment in a low-resource, fieldwork

data scenario? Do the strategies of broadening phone classes and cross-language acous-

tic modeling aid in the forced alignment of Panãra field data?

We tested methodologies of broadening phone categories and cross-language modeling

of Panãra field data, and we recommend researchers to: (1) utilize a large, pre-

trained acoustic model such as the Global English MFA (McAuliffe and Sondereg-

ger, 2023) model to align small field datasets; and (2) consider broadening phone

categories to help alignment when training models from scratch.

(d) Chapter 6 (Code-switching): Is the inclusion of code-switched data viable when con-

ducting forced alignment of fieldwork languages?

We demonstrated that the inclusion of code-switched speech and Russian pretrained

models aided alignments of Urum field data.

RQ2 Impact: How much can one rely on automated processes to obtain interpretable phonetics

answers?

(a) Chapter 4 (Outliers): What assumptions—about the quality of automated systems within

a corpus phonetics pipeline—are violated? What are the types of “errors” that outlying

vowel formants represent, how often do they occur, and why do they occur? Which types

make the strongest impact?

We developed a novel outlier taxonomy for vowel formant output in phone-aligned

speech, and found that errors in transcripts, alignments, and formant tracking can

vary depending on the data source and the language. Our analysis also revealed

that valid linguistic variation may be interpreted as erroneous.

(b) Chapter 6 (Code-switching): Does the method of acoustic modeling impact a down-

stream corpus phonetics investigation of code-switched speech from fieldwork data?

The method of acoustic modeling of Urum–Russian code-switched field data did im-

pact a downstream corpus phonetics analysis. The best acoustic model yielded more
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similar results to the manually fixed gold alignments than the worst acoustic model.

However, without manual correction, none of the automatic alignments were suit-

able for reaching conclusions for this particular research question.

1.3 Outline

This dissertation is a compilation of several studies that analyze aspects of the corpus phonetics

pipeline to enable the study of multilingual and low-resource language varieties. Chapter 2 dis-

cusses the background and prior literature on various aspects of language diversity and language

technologies used in the corpus phonetics pipeline to process such speech corpora.

For the first half of our contribution, Chapters 3 and 4 investigate how to use large, multilingual

corpora for phonetics research. In Chapter 3, we first introduce the corpus phonetics pipeline in

detailing the methodology behind creating the VoxCommunis Corpus of 36 languages, a deriva-

tive of the Common Voice Corpus (Ardila et al., 2020). We then demonstrate how certain biases

and assumptions throughout the pipeline impact downstream speech research in Chapter 4. We

develop a taxonomy of outliers from the pipeline’s output across three language datasets (Hausa,

Kazakh, and Swedish) from VoxCommunis and the VoxClamantis Corpus (Salesky et al., 2020),

and highlight weaknesses in the pipeline’s assumptions while uncovering unique characteristics of

these languages.

In the second half of our contribution, Chapters 5 and 6 test new methodologies in conducting

acoustic modeling and forced alignment of low-resource field data. Instead of answering corpus

phonetics questions about typology, we shift to applying corpus phonetics, specifically phonetic

forced alignment, to language documentation. Chapter 5 investigates cross-language forced align-

ment and the manipulation of the grapheme-to-phoneme conversion in the acoustic modeling of

Panãra, an Amazonian indigenous language. The final study in Chapter 6 tests the methodology of

forced alignment for code-switched Urum–Russian field data. Findings from these studies not only

benefit the direct research of languages such as Panãra and Urum, but more broadly demonstrate

viable ways to conduct phonetics research of non-standard, diverse language data. Chapter 7 con-

cludes this work with a summary and a discussion of broad themes from phonetics and language
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technology.

6



CHAPTER 2

Background

Both language data and language technologies have become increasingly available in recent years.

We first outline types of diverse speech data that are of interest in this dissertation, and then

discuss the methodology behind automated systems within the corpus phonetics pipeline. For the

reader’s reference, we use the term “phone” broadly to mean an individual sound unit, whether it

is a phoneme of a language—representative of one’s mental representation of that sound—or an

allophone, which relates to the acoustic-phonetic representation of that sound.

2.1 Diversity of speech data

Speech corpora from past decades generally came from monolingual, high-resource language va-

rieties. Popular, well-transcribed corpora included the TIMIT Corpus (Garofolo et al., 1993) with

read English sentences from monolingual US speakers, and the Buckeye Corpus (Pitt et al., 2005)

covering spontaneous English conversations from speakers of Ohio, US. Now, we have access to

datasets that encompass tens and hundreds of language varieties, which are commonly referred

to as massively multilingual corpora. We also have online repositories of field data, in which field

linguists have uploaded recordings of speakers of indigenous languages. In this dissertation, we

focus on the aspect of speech diversity that covers languages or dialects that are not widely spo-

ken, elicited in a range of styles from conversational speech to read sentences. We also study

code-switching, where multilingual speakers mix their varieties interchangeably in a conversation.

Diverse speech data can also include the fact that speakers come from wide backgrounds who vary

in age, gender, race, ability, social status, etc, or that the dataset quality could be variable; these

types of diversity are not the focus of this dissertation, but they are discussed during analysis.

Language technology that encompasses diverse speech data is still an active area of research.

This section outlines three types of speech data diversity and discusses research that has been done

to create such datasets and technologies.
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Corpus Reference Languages
Speakers
per lang

Hours
per lang

Hours
total

Hours
transcribed

Speech
style/type

IARPA BABEL Harper (2011) 21 - 200 >4,000 >4,000 Conversational
GlobalPhone Schultz et al. (2013) 20 100 400 17,000 17,000 Read sentences
CMU Wilderness Black (2019) 699 <10 20 13,725 13,725 Read (Bible)
VoxClamantis Salesky et al. (2020) 635 <10 20 12,700 12,700 Read (Bible)
VoxPopuli Wang et al. (2021) 23 - - 400,000 17,000 Parliament
mTEDx Salesky et al. (2021) 8 - 15-189 >700 >700 Narrative
MLS Pratap et al. (2020) 8 18-5,019 62-32,124 >36,000 >36,000 Read (audiobook)
FLEURS Conneau et al. (2023) 102 3 12 1,400 1,400 Read (Wikipedia)
MMS (labeled) Pratap et al. (2024) 1,107 <10 1-200 44,700 44,700 Read (Bible)
MMS (unlabeled) Pratap et al. (2024) 3,809 - <100 7,700 0 Misc
Common Voice (v20) Ardila et al. (2020) 134 - - 33,150* 33,150* Read sentences

Table 2.1: An overview of multilingual speech corpora. For each corpus, we list the number of lan-
guages, speakers per language, hours per language, total hours, transcribed hours, and speech style
or type of speech. The hyphen symbol (-) indicates that the relevant information was unavailable.
*Of the 33,150 hours reported in Common Voice (v20; December 2024), 22,108 hours have been
validated.

2.1.1 Massively multilingual speech corpora

Large speech corpora have been curated in recent years spanning a wide variety of languages and

types of speech. Table 2.1 summarizes several prominent multilingual speech corpora described in

this subsection.

From over a decade ago, the IARPA BABEL and GlobalPhone corpora were some of the first

large, multilingual spoken corpora in research and have been popularly used for Automatic Speech

Recognition (ASR) system development. In 2011, the IARPA BABEL Corpus was released with

transcribed conversational telephone speech in 21 diverse languages (Harper, 2011). In 2013, the

GlobalPhone Corpus was released with over 400 hours of read speech audio across 20 languages

and around 100 speakers per language (Schultz et al., 2013). These corpora, however, are neither

public nor open source.

In the last ten years, several multilingual spoken corpora have been released that are publicly

available. The following corpora based on the Bible religious texts have some minor copyright

restrictions. Most similar in approach to the corpus we create in Chapter 3 is the VoxClamantis

Corpus, derived from the massively multilingual CMU Wilderness Corpus. The CMU Wilderness

Corpus is a collection of audio recordings in nearly 700 languages of the New Testament, with

around 20 hours of speech per language (Black, 2019). Building off of this corpus, the VoxCla-
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mantis Corpus contains an initial pass of utterance- and phoneme-level alignments of the readings,

along with a preliminary set of vowel formants and sibilant fricative spectral properties (Salesky

et al., 2020). The labeled dataset from the Massively Multilingual Speech (MMS) Corpus (Pratap

et al., 2024) contains read speech from 1,107 languages of New Testament recordings derived from

the same Bible corpus website as the CMU Wilderness corpus, though they reported higher quality

alignment than the CMU Wilderness Corpus (Black, 2019). At the time of their releases, these Bible

corpora were the largest spoken corpora in terms of range of language variation, including some

severely low-resource languages. While having a wide language coverage, each language reading

has very few speakers, most of whom are male. This presents a limitation for phonetic analysis

as there can be confounds between speaker and language variation. In addition, some copyright

restrictions limit the accessibility of the audio.1

Other types of publicly available, read or transcribed speech corpora have also been developed.

The Common Voice Corpus is a collection of read sentences voluntarily recorded and validated by

internet users on web and phone platforms (Ardila et al., 2020). Version 7 (released in July 2021)

of this corpus spans 75 languages and was used to create the derivative VoxCommunis Corpus in

Chapter 3; the more recent Version 20 of Common Voice (released in December 2024) spans 134

languages. The multilingual Librispeech Corpus (MLS) encompasses read speech in the form of

audiobooks, and it spans eight European languages and over 36,000 hours of speech (Pratap et al.,

2020). The multilingual TEDx (mTEDx) Corpus contains over 700 hours of transcribed speech from

TED talks in eight European languages (Salesky et al., 2021).

Lastly, FLEURS (Few-shot Learning Evaluation of Universal Representations of Speech) has be-

come a popular benchmark dataset for speech technology tasks (Conneau et al., 2023). It spans

102 languages with roughly 12 hours of speech per language. A set of English Wikipedia sen-

tences had been translated into 101 other languages, and Conneau et al. (2023) recorded three

native speakers per language to read these sentences. This dataset has been used for tasks such as

speech recognition (Zhao et al., 2025), speech translation (Hu et al., 2025), and spoken language

identification (Peri et al., 2025).
1Though it is accessible through the bible.is website, each language dataset must be downloaded individually.
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Aside from transcribed speech corpora, unlabeled datasets have also been created for use in

training models for speech technology applications. The VoxPopuli Corpus contains 400,000 hours

of unlabeled speech (and 17,000 hours of transcribed speech) data spanning 23 languages taken

from European parliament recordings (Wang et al., 2021). The unlabeled set of MMS (Pratap et al.,

2024) spans 3,809 languages and 7,700 hours of religious recordings from the Global Recordings

Network.

Beyond speech corpora that may have transcriptions at the word-level, there also exist multilin-

gual phonetic datasets with transcriptions at the phone-level (see for example the UCLA phonetics

archive, Ladefoged and Maddieson, 1996; Li et al., 2021; Chodroff et al., 2024b; and IPAPack, Zhu

et al., 2024). We do not utilize these types of datasets as starting points for our contribution stud-

ies, but such phonetic datasets can be curated by the corpus phonetics pipeline described in this

work. If phone segments are automatically time-aligned or automatically transcribed, or both, one

should exercise some caution in utilizing them as ground truth.

2.1.2 Low-resource, endangered language data

Among the approximate 7,000 languages spoken in the world, nearly 40% of them are believed to

be dying and at risk of people no longer using the language (Campbell et al., 2022). Field linguists

are actively documenting many of these languages for goals that can include language preserva-

tion, revitalization, teaching, and deepening linguistic understanding. Repositories such as the

Endangered Languages Archive (ELAR)2 allow linguists to upload speech recordings, dictionaries,

and other language materials for the preservation and benefit of research over these languages.

Research from Levow et al. (2021), for example, created systems for speaker diarization and recog-

nition across eight language datasets from ELAR.

Other computational research has aggregated field corpora and developed technology to sup-

port documentation of low-resource languages. For many datasets, recordings may be plentiful

while transcriptions are sparse, and this has been referred to as the “transcription bottleneck” for

language research. Lane and Bird (2021) implemented the Sparse Transcription model from Bird
2https://www.elararchive.org/
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(2021) to utilize local word discovery technology to predict phone transcription of content located

between already-recognized or indexed words. Michaud et al. (2018) conducted phoneme recogni-

tion on Yongning Na speech and showed how linguists could benefit from using speech technology

tools to aid their documentation.3

Besides developing phone recognition tools, research has also focused on alignment of text to

audio at the utterance, word, and phone levels. Littell et al. (2022) created ReadAlong Studio, a

toolbox for creating visualized audiobooks that have educational applications. They incorporated

word-level alignment of speech to text in 30 indigenous languages, allowing learners to visualize

each word they listen to in a karaoke-style display. Paschen et al. (2020) developed the DoReCo

Corpus which included datasets from 44 fieldwork-based endangered languages, and they used the

WebMAUS forced aligner (Kisler et al., 2017) to align all speech data at the phone-level. We utilize

the DoReCo Corpus in our analysis of forced alignment of code-switched field data in Chapter 6.

2.1.3 Code-switched speech data

As many of the speakers in this world are multilingual, it is not uncommon to use more than one

language to communicate. In this work, we will refer to the mixing of two or more languages in

an utterance as code-switching.4 Here is an example of a code-switched Spanish–English utterance

with Spanish displayed in brackets:

[es su tío] that has lived with him

“[It’s his uncle] that has lived with him.”

(From the Miami Bangor Corpus; Deuchar et al., 2014)

Much of the linguistic literature on code-switching has focused on the syntactic and socioprag-

matic aspects of engaging multiple languages at once (Bullock and Toribio, 2009; Muysken, 2000).
3Michaud et al. (2018) also discussed perspectives on how these types of speech technology tools can help linguists

psychologically and encourage them in their documentation process.
4While code-switching can refer to mixing languages or dialects within a whole conversation, we use it to mean

switching languages within a single utterance or sentence. This finer-grained mixing is also called “code-mixing” in the

literature.
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With respect to the phonetics of code-switching, research has focused on how acoustic properties

shift when speakers activate multiple languages in their mind. For example, Voice Onset Time

(VOT) and speech rates noticeably changed near language switch boundaries between Spanish and

English (Fricke et al., 2016). Using the example utterance above, that would mean that these

phonetic and prosodic properties are altered when the speaker switches from the Spanish word

tío (uncle) into the English word that. In another study, Seo and Olson (2024) recorded read

sentences from Korean–English bilinguals to investigate vowel quality across different syntactic

structures. They found that English vowels in code-switched Korean–English utterances were more

Korean-like in intra-sentential rather than in inter-sentential code-switched structures. We simi-

larly investigated vowel quality in Urum–Russian code-switched utterances for the case study in

Chapter 6.

It has been observed that a language of broader communication, usually a high-resource lan-

guage, is often used during the elicitation of a low-resource, target field language. In an overview

of methods to bridge language documentation and speech processing technologies, Levow et al.

(2017) proposed a language identification task between a high-resource language and a low-

resource target language when both are present in field recordings. San et al. (2022) addressed the

mixing of high- and low-resource languages by applying state-of-the-art language technologies to

detect and transcribe English portions of speech in a dataset documented for the field language Mu-

ruwari. In this case, English was largely used in meta-linguistic commentary and questions, such as,

“What is the word for tree?” This approach helped the annotation process, where authorized people

could scan the meta-linguistic content and triage the recordings for later annotators who had more

limited access to the corpora. These studies demonstrate that (1) language mixing is prevalent, and

(2) applying technology to the higher-resource language can benefit the documentation process.

High-quality code-switched speech corpora are difficult to curate as they take extra time and re-

sources to transcribe and annotate. Among some of these, the Miami Bangor Corpus is a set of spon-

taneous conversations of Spanish–English from American bilinguals living in Miami, USA (Deuchar

et al., 2014). This dataset spans 35 hours and 84 speakers, with all words fully transcribed and

tagged for language. Another corpus meticulously created is SpiCE, a large Cantonese–English
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bilingual corpus recorded under three different elicitation styles in a controlled set-up (Johnson

et al., 2020). Spanning 19 hours of speech and 34 speakers living in Vancouver, Canada, these

recordings include sentence reading tasks, storyboard narration, and conversational interviews.

Developing technologies for code-switching is still a challenging area of research in the Natural

Language Processing (NLP) and speech communities. Winata et al. (2023) found over 400 public

research papers on code-switching from the ACL anthology and ISCA proceedings over the past few

decades. These works focused on tasks ranging from language identification to sentiment analysis

to automatic speech recognition (ASR). Among these papers, English mixed with a non-English

variety such as Hindi, Chinese, and Spanish, was overrepresented. The authors highlighted a need

for work to be done on more diverse non-English language pairs, for which our study in Chapter 6

fills a gap.

2.2 Corpus phonetics pipeline

We now give a general review of the technologies used in the corpus phonetics pipeline that we

implement to process and analyze diverse speech data. The corpus phonetics pipeline can in-

clude the following processes: automatic speech recognition (ASR) or speech-to-text conversion,

grapheme-to-phoneme conversion, acoustic modeling, forced alignment, and acoustic-phonetic fea-

ture extraction. Figure 2.1 displays the pipeline used throughout the contribution chapters of this

work.

2.2.1 Automatic speech recognition (ASR)

Automatic speech recognition (ASR) is a system that takes in a speech audio file and outputs

a transcription, typically at the word-level. This process can be done via separate processes of

acoustic modeling followed by language modeling, or an end-to-end process where the ASR system

is a single unit that inputs speech and outputs a string of text. Here, we discuss the former method

and highlight acoustic modeling, as this is most relevant for the application of forced alignment

used throughout this dissertation.
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Figure 2.1: The corpus phonetics pipeline, assuming there already exists corresponding text tran-
scriptions of the speech files. Without existing text transcriptions and utterance-level alignments,
automatic speech recognition tools may be useful. G2P stands for grapheme-to-phoneme conver-
sion, and feature extraction refers to the extraction of acoustic-phonetic features for the use of
phonetic analysis.

The following process describes how the Kaldi ASR toolkit (Povey et al., 2011) in particular

develops acoustic models. As we will see in Section 2.2.3, this is the underlying system used in the

Montreal Forced Aligner.5 Acoustic models are statistical representations of phonemes or phones.

To train acoustic models for some speech data, Kaldi takes as input: audio files, lists of words

and phones present in the transcripts, and speaker labels. It then extracts features such as Mel

Frequency Cepstral Coefficients (MFCCs), which represent the human speech signal. Kaldi then

trains monophone acoustic models by learning probability distributions for each phone state and

their transitions between one another. A first-pass alignment is conducted, where the audio is

segmented preliminarily into phones.6 Then, Kaldi trains triphone models where not only is there

a model learned per individual phone, but per each possible sequence of three phones. This allows

for contextual representations of phones, as we know for example that /t/ in American English

can sound different in the phonemic sequence /I-t-@/ (pronounced [I-R-@] from “Italy”) than in the

phonemic sequence /s-t-ô/ (pronounced [s-t-ô] from “string”). Further training is combined with
5Details for how to use the Kaldi ASR toolkit and other corpus phonetics tools can be found in the tutorial by Chodroff

(2018), also accessible at: https://www.eleanorchodroff.com/tutorial/.
6Segmentation is the process of identifying the start and end timestamps of each phone.
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speaker normalization and adaptation. The models learn to attune to differences between phones

instead of to differences between speakers or noise environments. This way, when new, “test” data

is given to the system, the acoustic models would not have overfitted to only the seen data and

speakers, but should generalize to the new data and speakers.

A traditional ASR system would complement acoustic modeling with language modeling, which

learns the likelihoods of word sequences. The final output is a string of words that represents the

highest probability transcription of the audio. In this dissertation, we do not use any full ASR system

to create transcripts over speech recordings. However, it is a critical part of forced alignment, and

automatic transcriptions have potential to be used within the corpus phonetics pipeline in the

absence of manual transcriptions.

ASR has been utilized in linguistics research of diverse speech data. Coto-Solano et al. (2021)

showed that ASR worked well to detect the sociophonetic phenomena of the US Southern and

Northern Vowel Shifts, when used in conjunction with the DARLA tool (Reddy and Stanford, 2015)

that also implemented forced alignment and vowel feature extraction. Popular large, pretrained

ASR models such as wav2vec2.0 (Baevski et al., 2020) and Whisper (Radford et al., 2023) have

been used for transcribing low-resource data as well. For example, Macaire et al. (2022) fine-

tuned wav2vec2.0 on two French-based Creole languages, Gwadloupéyen and Morisien. Liu et al.

(2024) explored different fine-tuning strategies of the Whisper model applied to seven different

low-resource language datasets: Afrikaans, Belarusian, Icelandic, Kazakh, Marathi, Nepali, and

Swahili. While research by Liu et al. (2024) was more focused on model methodologies, the

best-performing strategies yielded Word Error Rates of below 20%, which is promising for future

linguistics research to be conducted on these diverse languages.

Beyond standard ASR systems that produce transcriptions at the word-level, automatic phoneme

recognition is another useful technology that takes speech as input and outputs a string of phonemes

or phones. This technology has the potential for being more multilingual or language-agnostic, as

sound systems may overlap better across languages than dictionaries of words. Michaud et al.

(2018) noted that phoneme recognition systems need less training data than classic word-level

ASR systems. Popular tools such as XLS-R FAIR (Xu et al., 2022) can be leveraged to conduct
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zero-shot phoneme recognition on data from languages that the system had not seen before. It

has the potential for usefulness in the language documentation pipeline (see Lane and Bird, 2021)

and for verifying the accuracy of grapheme-to-phoneme systems (see Samir et al., 2025). How-

ever, we choose not to utilize phoneme recognition in this dissertation. It only learns surface-level

acoustics and does not take into account linguistic (phonemic) contrasts. We choose instead to

use linguist-curated, rule-based grapheme-to-phoneme systems. This more controlled setting is

preferable when we will be conducting linguistic analyses on downstream output from the corpus

phonetics pipeline.

2.2.2 Grapheme-to-phoneme (G2P) systems

Another bottleneck in cross-linguistic phonetic research is the conversion of orthographic tran-

scripts to their corresponding phonetic (or phonemic) forms. This process is known as grapheme-to-

phoneme (G2P) conversion, and can be accomplished in a variety of manners, whether rule-based

or statistical, and with or without audio files. The G2P systems discussed in this section gener-

ally use broad phonetic transcriptions that best correspond to sequences of phonemes or surface

phonological segments. In this dissertation, we refer to these sound segments as phones.

Rule-based G2P systems

Rule-based G2P systems allow one to explicitly define the rules for mapping orthographic charac-

ters to phone segments. These are generally created by linguists and language experts, are easily

controllable, and work best for languages with transparent orthography. Among popular rule-

based systems, Epitran is a publicly available G2P toolkit that supports conversion for around 60

languages (Mortensen et al., 2018). Its architecture consists of finite state transducers, all ma-

nipulated via a Python interface. Another tool that utilizes a web interface is the Cross-linguistic

Phonological Frequencies (XPF) Corpus, a resource of phonemic lexicons or grammars for over

200 spoken languages (Cohen Priva et al., 2021).7 The output of these systems is a pronunciation

lexicon for each language dataset with mappings between each word form and its corresponding
7https://cohenpr-xpf.github.io/XPF/Convert-to-IPA.html
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phonemic transcription. Epitran and XPF are the main tools used in this dissertation. Additionally

for application in language documentation contexts, there exists a tool named Gi2Pi (Pine et al.,

2022), which is another rule-based G2P system with user-friendly features. While it already sup-

ports over 30 mainly indigenous languages, linguists can easily create mappings for new languages

and implement the tool over their datasets.

Machine learning G2P systems

Other G2P tools and datasets have also been employed in research. The SIGMORPHON 2021

shared task on G2P utilized WikiPron, a pronunciation database derived from Wiktionary that

spanned nearly 2 million pronunciations in 165 languages (Ashby et al., 2021; Lee et al., 2020).

One baseline model for this task included Phonetisaurus (Novak et al., 2016), which paired an

n-gram model to finite state machines. Other advanced models utilized neural network models

such as a neural transducer (Makarov and Clematide, 2018) and bidirectional LSTMs (Hammond,

2021). Neural multilingual G2P systems have also been developed, such as the ByT5-based system

by Zhu et al. (2022) that was trained on around 100 language datasets.

These commonly used G2P systems mentioned above were not evaluated based on the sounds

actually produced in speech. It is understandably difficult to do so, due to variability in natural

speech. More recently, there has been research that incorporates audio files in developing a G2P

system. Gao et al. (2024) developed a G2P transducer that included speech units, where the model

simultaneously processed audio and graphemes to produce the hypothesized phone sequence. This

is a promising direction of research that is more similar in vein to phoneme recognition, and that

we could see in potential applications of informing the documentation process of phone discovery.

G2P evaluation

For these models, accuracy was typically measured with Word Error Rate (WER) or Phone Error

Rate (PER) based on a gold set of phone transcriptions (Ashby et al., 2021; Lee et al., 2020;

Mortensen et al., 2018; Novak et al., 2016). Gold phone transcriptions, however, may be subjective

or prone to errors and inconsistencies, as Gorman et al. (2019) revealed in an error analysis using

data mined from Wiktionary. Furthermore, phoneme inventories for even the same language have
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been reported to vary across reputable databases. Anderson et al. (2023) attributed this variation to

both systematic and unpredictable differences in the transcription conventions and design choices

for each database. In a careful audit performed by Samir et al. (2025), output from state-of-the-art

phoneme recognizers was compared with “gold” phone sequence labels. For data partitions where

annotators highly dispreferred the gold labels—when those partitions were removed, there was

a noticeable improvement in the performance of a downstream phoneme recognition task. This

shows that automatic labeling of phone sequences can lead to worse downstream performance of

another system in the pipeline.

In Chapter 4, we create an outlier taxonomy that can attribute possible errors in downstream

acoustic-phonetic output to the nature of the G2P system. Following that, in Chapter 5, we ma-

nipulate the level of granularity in defining a set of phones, to test the utility it has on alignment

precision. While we do not define new metrics for measuring G2P accuracy, we show that the

G2P system in a corpus phonetics pipeline has significant impact on both alignment and acoustic-

phonetic measures.

2.2.3 Phonetic forced alignment

For phonetics research, it can be extremely useful to know where all phones of interest occur within

a speech recording. While this can be achieved manually, having an automated process to facilitate

this can greatly speed up annotation and enable analysis of substantially larger speech corpora

(Labov et al., 2013). In this subsection, we discuss the various types of forced alignment systems

and how they function, and the Montreal Forced Aligner (MFA) in particular, along with how these

systems are evaluated and utilized on diverse speech datasets.

Types of alignment systems

Forced alignment tools take speech and its orthographic transcription and automatically produce

time-aligned segmentation of the sound units. Popular forced alignment tools include the Montreal

Forced Aligner (MFA, used in this work; McAuliffe et al., 2017), EasyAlign (Goldman, 2011), FAVE

(Rosenfelder et al., 2011), LaBB-CAT (Fromont and Hay, 2012), Prosodylab-Aligner (Gorman et al.,
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2011), and WebMAUS (Kisler et al., 2017). These aligners rely on acoustic models of a language’s

phone categories that have been trained on annotated speech data. Oftentimes they are built with

GMM-HMMs, which apply the learned distributions of the acoustics (Gaussian Mixture Models) to

the sequential output of hidden states (Hidden Markov Models). In this case, each output state is a

time slice of acoustic features and each hidden state is a sound unit representation.

Beyond these popular tools, there has been recent research exploring neural network-based

forced alignment. Rousso et al. (2024) compared state-of-the-art ASR systems, WhisperX and Mas-

sively Multilingual Speech Recognition (MMS), to MFA and found that MFA still outperformed

these other models, when applied to English data. Kelley et al. (2024) used interpolation tech-

niques and trained the acoustic model to allow for non-discrete, overlapping phone boundaries,

providing increased precision performance over English speech data, compared to MFA. Zhu et al.

(2024) developed a multilingual forced aligner that can segment unseen language data into IPA

phones. While it would be interesting to utilize these latter two systems in our experiments, we

leave this for future research.

Montreal Forced Aligner (MFA)

The Montreal Forced Aligner (MFA; McAuliffe et al., 2017) is the forced aligner used throughout

this dissertation. Among other applications, MFA provides a user-friendly wrapper to the Kaldi ASR

toolkit (Povey et al., 2011) for acoustic model training and alignment. We chose MFA over other

forced aligners because it is user-friendly, it is built on a high-quality ASR system, and it performs

consistently well against other aligners (Mahr et al., 2021). The tool is also easy to use for training

or adapting on small datasets.

For MFA, three types of input are required: speech files, text transcripts, and a lexicon, or

pronunciation dictionary. A lexicon contains entries of each orthographic word in the data mapped

to its sequence of sounds, and these sounds are considered the dataset’s phone inventory. If the

forced aligner is trained from scratch, it will generate an acoustic model. For every possible sound

that is defined in the lexicon, the acoustic model will learn the distributions of the acoustic features

(typically MFCCs). If for example [a] and [i] are separate sounds in the phone inventory, the model
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Figure 2.2: Example of boundary difference calculations in a Panãra audio file from the dataset in
Chapter 5, visualized in Praat (Boersma and Weenink, 2022). The first interval tier displays the
input utterance. The second tier shows the manually-aligned boundaries, and the third tier shows
system-aligned boundaries. The fourth tier shows the onset boundary differences for the phones
[k] and [R].

will create a separate probability distribution for [a] and [i] features. In order to produce time-

aligned segments of the sounds, a model is then applied to the target speech with its corresponding

transcript.8 If a user of the toolkit wants to align some data of a language for which an existing

pretrained acoustic model exists, they can simply download that model and apply it to their data.

When applying a pretrained model to new data, one can either apply the model directly, or one

can “adapt” the model to the new data. The adaptation process requires the same three types of

input as training a model—namely, speech files, text transcripts, and a lexicon. Adaptation updates

the means of the pretrained acoustic models (but not the variances) based on the acoustics of the

new data; this is the technique used in several experiments throughout this dissertation. Default

MFA settings, employing a triphone GMM-HMM architecture with MFCCs, were used for all model

training and adaptation.
8This alignment process is not a supervised learning task, because phone alignments are not used to train the models.

The alignments are estimated based on the acoustic model.
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Alignment evaluation

We utilized two main metrics for the evaluation of alignment performance in Chapters 5 and 6.

Each metric requires comparing automated system alignments to the hand-corrected, “gold” align-

ments. Precision is the percent for which the model onset boundary is within a 20 ms tolerance

(the selected threshold) of the manually aligned onset boundary (MacKenzie and Turton, 2020;

McAuliffe et al., 2017).9 It can also be referred to as “agreement” between a human annotator and

system output. Accuracy is the proportion of model-aligned intervals whose midpoints lay within

the respective gold intervals (Knowles et al., 2018; Mahr et al., 2021). Figure 2.2 shows an example

of (1) an onset boundary that is displaced greater than 20 ms and therefore considered imprecise:

the [k] is displaced 129 ms after its corresponding gold boundary, and (2) an onset boundary that

is within 20 ms and is considered precise: the highlighted [R] is displaced only 10 ms before its

corresponding gold boundary.

Additional metrics used in prior research have included the absolute difference between system

and gold offsets or segment midpoints (Coto-Solano and Solórzano, 2017). Overlap rate was also

used by Gonzalez et al. (2020), who calculated a percentage based on the gold segment duration,

system segment duration, and their shared duration.

Forced alignment applied to diverse data

Research has explored a range of strategies to force align non-standard and low-resource language

varieties. Cross-language forced alignment is a technique that uses a pretrained acoustic model of

a high-resource language to align a low-resource language. American English models have been

helpful for aligning related English varieties such as British English (MacKenzie and Turton, 2020)

and North Australian Kriol (Jones et al., 2019), as well as less related languages such as Cook Is-

lands Maori (Coto-Solano et al., 2018) and Yoloxóchitl Mixtec (DiCanio et al., 2013). Meer (2020)

used American English models to align Trinidadian English, representing one of the nativized, post-

colonial “New Englishes” spoken worldwide. Bribri, a Chibchan language of Costa Rica, has also
9A tolerance of 20 ms has been commonly used as an optimal threshold for inter-rater agreement and for evaluation

of forced aligners. See Williams et al. (2024) for rationale and further references.
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been phone-aligned with English-based FAVE and French-based EasyAlign pretrained models (Coto-

Solano and Solórzano, 2017). We explore cross-language modeling and alignment techniques in

Chapters 5 and 6.

Besides cross-language or cross-variety modeling, forced alignment has been applied to the

study of other diverse language settings. Mathad et al. (2021) investigated the goodness of pronun-

ciation in a speech pathology setting through forced aligned speech of children with and without

a cleft palate. Williams et al. (2024) evaluated forced alignment of MFA on L2 English, producing

findings such as that speaker rate (correlated more with language proficiency) may have more ef-

fects on alignment performance than L1 language variety. Bailey (2016) used FAVE and dictionary

expansion techniques to study sociophonetic phenomena of British English. These studies that span

speech pathology, education, and sociology show that forced alignment plays a critical role in the

pipeline of broader speech language research.

2.2.4 Acoustic-phonetic measurements

Last in the pipeline of corpus phonetics, once audio files have been segmented, is to extract the

acoustic-phonetic measurements. Researchers may be interested in measures such as vowel for-

mants, voice quality, pitch, voice onset time (VOT), spectral features, and so forth. In this disser-

tation, we focus on vowel formants for two reasons. First, vowel segment boundaries tend to be

more accurately placed during the automatic forced alignment process. Second, vowel formants

are standard measurements reported across all language variety illustrations of the Journal of the

International Phonetic Association (JIPA).

Vowel formants

Formants are concentrations of high acoustic energy in the frequency spectrum, and reflect reso-

nant frequencies in the vocal tract. Because of their relationship to the shape of the oral cavity

(articulation) and corresponding perceptual quality (perception), these measures are commonly

extracted for a wide variety of phonetic analyses. The first formant (F1) strongly correlates with

tongue height and the second formant (F2) with tongue backness (Ladefoged and Johnson, 2014).
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These two dimensions are highly diagnostic for most vowel contrasts. F3 frequently correlates with

lip rounding, rhoticity, and nasality, and F4 can reflect high front vowel contrasts and aspects of

voice quality (Eek and Meister, 1994; House and Stevens, 1956; Ladefoged et al., 1978; Lindblom

and Sundberg, 1971).

A popular method for extracting formants is the Burg linear predictive coding (LPC) algorithm

that relies on parameters including the maximum number of formants to search for and the maxi-

mum frequency under which to do the search (Barreda, 2021; Boersma and Weenink, 2019; Reddy

and Stanford, 2015; Rosenfelder et al., 2011). To evaluate the accuracy of extracted formants,

one can use the mean absolute differences between gold standard formants and automatic formant

estimates (Barreda, 2021; Evanini et al., 2009). While we do not explicitly report formant mea-

surement performance against a gold standard in this work, our taxonomy of outliers in Chapter 4

includes formant extraction errors, where annotators could manually specify that the extraction

was erroneous.

It is from this last piece of the corpus phonetics pipeline that phoneticians and field linguists

can discover patterns of their language varieties of study. As the data increases in size and diversity,

it is important to consider the impact of the pipeline on these acoustic-phonetic measurements.

2.3 Looking ahead

We have introduced several types of diverse speech data and given background on the automated

systems within the corpus phonetics pipeline. In the next part of this dissertation, we will fill

gaps in the literature and extend work done in these areas. At a high level, our contributions lay

foundations for conducting corpus phonetics on multilingual and low-resource speech data.

Chapter 3 takes the Common Voice Corpus (Ardila et al., 2020) through the corpus phonetics

pipeline to create a derivative corpus (VoxCommunis) with 36 languages, usable by linguists to

conduct phonetics research. This new corpus complements the existing massively multilingual

speech corpora detailed in Section 2.1.1. Chapter 4 then analyzes the quality of VoxCommunis

and VoxClamantis (Salesky et al., 2020), conducting a semi-automatic audit of outlying vowel

formants in order to identify various points in the pipeline where errors occurred. We provide a
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novel taxonomy and holistic framework for interpreting outliers from a multi-step process pipeline.

Chapters 5 and 6 explore methods for conducting phonetic forced alignment on low-resource, field

corpora. Research on cross-language forced alignment for low-resource data has been done for

language varieties in the past, but our work experiments with new techniques. First, we change

the level of granularity of phone classes in acoustic modeling (Chapter 5). This technique has

been done for sentence-level alignment of larger, high-resource language datasets (Hoffmann and

Pfister, 2013), and we extend that work by conducting phone-level alignment of Panãra field data.

Second, we include code-switched utterances in the training of acoustic models (Chapter 6). Code-

switching has not yet been analyzed in a computational corpus phonetics framework on fieldwork

datasets, and we fill this gap by testing strategies for phone-aligning Urum–Russian field data. Each

contribution chapter of this dissertation critically examines the experimental results and provides

case studies or error analyses to discern linguistic patterns in the output and to better understand

the effects of corpus phonetics technology on language data.
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Part II

Contribution
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CHAPTER 3

The Corpus Phonetics Pipeline Applied to the Common

Voice Dataset

Overview

We answer RQ1 and introduce the methods of a corpus phonetics pipeline and how it can be applied

to multilingual read speech. Data resulting from this processed corpus is used in Chapter 4. This

chapter is largely equivalent to the paper titled VoxCommunis: A Corpus for Cross-linguistic Phonetic

Analysis from The Proceedings of the 13th Language Resources and Evaluation Conference (Ahn and

Chodroff, 2022).

3.1 Abstract

Cross-linguistic phonetic analysis has long been limited by data scarcity and insufficient compu-

tational resources. In the past few years, the availability of large-scale cross-linguistic spoken

corpora has increased dramatically, but the data still require considerable computational power

and processing for downstream phonetic analysis. To facilitate large-scale cross-linguistic phonetic

research in the field, we release the VoxCommunis Corpus, which contains acoustic models, pro-

nunciation lexicons, and word- and phone-level alignments, derived from the publicly available

Mozilla Common Voice Corpus (Ardila et al., 2020). The current release includes data from 36

languages. The corpus also contains acoustic-phonetic measurements, which currently consist of

formant frequencies (F1–F4) from all vowel quartiles. Major advantages of this corpus for phonetic

analysis include the number of available languages, the large amount of speech per language, as

well as the fact that most language datasets have dozens to hundreds of contributing speakers.

We demonstrate the utility of this corpus for downstream phonetic research in a descriptive anal-

ysis of language-specific vowel systems, as well as an analysis of “uniformity” in vowel realization
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across languages. The VoxCommunis Corpus is free to download and use under a CC0 license at

https://osf.io/t957v/wiki/home/.

3.2 Introduction

For a thorough understanding of cross-linguistic phonetic variation and systematicity, big data from

a diverse set of languages is necessary. In 2009, it was noted that despite the advances made in

speech technology and computational power, there had been “surprisingly little change in style

and scale of [phonetic] research” from 1966 onwards (Liberman, 2009). Since even that period,

considerable advances have been made for increased processing power of large-scale phonetic cor-

pora, but largely within a single “high-resource” language such as English, in which relevant data

for automatic speech processing approaches already exist.

Until recently, the movement towards large-scale, cross-linguistic phonetic research has been

somewhat limited. Previous large-scale cross-linguistic phonetic studies have mostly been meta-

analyses that rely on a standardized phonetic measure and a plethora of published cross-linguistic

research (Whalen and Levitt, 1995 for vowel f0, Becker-Kristal, 2010 for vowel F1 and F2, Chodroff

et al., 2019 for stop VOT). Prior to 2020, existing multilingual speech corpora contained maximally

twenty-some languages (Harper, 2011; Schultz et al., 2013), or insufficient data for most phonetic

analyses (Ladefoged and Maddieson, 2007). More recently, Salesky et al. (2020) presented the

VoxClamantis Corpus for large-scale phonetic typology that provided phonetic data for over 500

languages, based on recordings and transcripts from the CMU Wilderness Corpus (Black, 2019).

Only in the past few years (e.g., from 2019) have these massively multilingual corpora been made

publicly available. In addition, the tools necessary to process such data for phonetic analysis have

been considerably improved and expanded in utility and coverage.

In the present chapter, we introduce the VoxCommunis Corpus for large-scale cross-linguistic

phonetic analysis based on the Mozilla Common Voice Corpus1 (Ardila et al., 2020). The Mozilla

Common Voice Corpus is a publicly available, community-driven, multilingual speech corpus that

contains read sentences collected via the internet on both web and phone platforms. Sentences
1https://commonvoice.mozilla.org/en/datasets
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are gathered from Wikipedia articles as well as from internet users who identify themselves with

the language community. These sentences are then recorded individually by language community

members. A subset of utterances is additionally “validated” by members, indicating that at least two

members have confirmed that the reading of a specific utterance is faithful to the corresponding

written text. Version 7.0 (released July 2021) has data for approximately 75 languages. Each

language contains anywhere from around 50 MB to over 100 GB of audio data, and anywhere from

three to over a hundred speakers. The corpus is freely available for download and academic use. It

is also community-driven with active maintenance and updates, meaning that the size of the corpus

is regularly increasing.

This corpus can facilitate research in language-specific phonetics and phonetic typology, which

can in turn improve speech technologies. As spoken language technologies are becoming increas-

ingly common, their effectiveness and coverage over diverse language varieties have become more

and more important. Good automatic speech recognition (ASR) systems and text-to-speech (TTS)

systems rely on accurate knowledge and implementation of phonetics and phonology—the studies

of the production and perception of speech sounds and how they are organized. Improved under-

standing of the universals and variation in phonetic realization can inform the development of such

speech technology, particularly for low-resource languages.

3.3 Methodology

The primary goal of our data processing was to obtain word- and phone-level forced alignments

for each recording to facilitate acoustic-phonetic measurement. Our processing targeted language

datasets for which grapheme-to-phoneme toolkits were available, had less than 300 hours of val-

idated data (due to space and processing power limitations), and focused only on the “validated”

utterances of each dataset. Through this process, we developed language-specific pronunciation

lexicons and acoustic models in addition to alignments. These resources may have independent

utility for phonetic research, such as language-specific forced alignment of new speech data or

improved pronunciation lexicon development.
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3.3.1 Grapheme-to-phoneme conversion

We relied on two linguist-designed, rule-based Grapheme-to-Phoneme (G2P) systems for this con-

version: Epitran (Mortensen et al., 2018) and the XPF Corpus (Cohen Priva et al., 2021). These

systems have been developed for many languages with a “transparent” orthography, in which the

orthographic representation is systematically related to its phonemic form.

Based on the intersection of languages between Common Voice, Epitran, and the XPF Corpus,

we could produce pronunciation lexicons for approximately 40 language datasets. Four of these

were removed due to poor G2P quality or processing issues in the acoustic model development.

These were two Chinese language datasets, Persian, and Arabic.2 In the resulting corpus, 18 lan-

guage datasets were processed using Epitran and 18 using the XPF Corpus. Among the languages

processed using Epitran, Hindi and Tamil were processed using dual G2P models to process the

predominant Indic-based script and secondary English romanized script.3 We manually updated

several entries across most datasets, especially where foreign characters or loanwords were in-

cluded in the input.

3.3.2 Acoustic model training

The acoustic models were developed using the generated pronunciation lexicons and the Montreal

Forced Aligner (MFA; McAuliffe et al., 2017). For each language with a pronunciation lexicon, we

trained an acoustic model using default settings from MFA version 2.0.09b. This training used a

GMM-HMM based system with various levels of speaker and channel adaptation. MFCCs were ex-

tracted from 25 ms windows with a 10 ms frame shift and then normalized using cepstral mean and

variance normalization. The acoustic models were then constructed using 40 iterations of mono-

phone training and alignment with a maximum of 1,000 Gaussians. These were followed by 35 it-

erations of Linear Discriminant Analysis with Maximum Likelihood Linear Transform (LDA+MLLT),

which reduced the feature space and derived speaker-specific transformations, and two rounds of
2Although we processed Russian, it is important to note that Epitran may not be reliable in its G2P output for Russian.
3The English words in these two lexicons were mapped to English phonology, although the audio often revealed that

the pronunciations were more faithful to Hindi or Tamil phonology.
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speaker-adapted training (SAT). This training was conducted with feature space Maximum Like-

lihood Linear Regression (fMLLR), which removed speaker-specific information from the models,

each with a maximum of 2,500 leaves and 15,000 Gaussians.4 As each recording was annotated

with a speaker identification code, this information was used to inform acoustic model training.

All audio files were available in 16-bit MP3 format, single channel, with a 32 kHz sampling

rate.5 Pre-processing steps included converting MP3 to WAV format and creating Praat TextGrids

populated with utterances. Each recording is a standard sentence-length utterance. The word-

and phone-level forced alignments were extracted directly from the final acoustic model for each

language. The alignments are released as Praat TextGrids.

3.3.3 Formant extraction

The first four formant values were extracted from each aligned vowel quartile using the Linear

Predictive Coding (Burg method) algorithm implemented in Praat via Praat scripting (Boersma

and Weenink, 2019). For each formant, values at 10 ms before and after the midpoint were also

extracted, for increased stability in analysis (see Section 3.5.1). All formant values were extracted

under both “high” and “low” frequency settings. Specifically, the tracker searched for five formants

with a ceiling of 5,500 Hz in the “high” setting, and a ceiling of 5,000 Hz in the “low” setting.

These are the recommended ceilings for typical female and male speech, respectively. Since only

a small portion of the corpus had gender labels, we performed a simple classification algorithm to

assign each speaker in the entire corpus to either the high or low setting. Using a subset of 1,200

gender-labeled speakers across 11 languages, we fit two bivariate Gaussians: one distribution over

average F1 and F2 values at the high formant tracking setting for speakers labeled as “female”,

and one distribution over average F1 and F2 values at the low formant tracking setting for speakers

labeled as “male”. Each speaker was classified as matching either the high or low setting depending

on which of the two trained distributions their average (F1, F2) values were closer to. Distance

was quantified using the Mahalanobis metric. We release both “high” and “low” sets of extracted
4For more detail on the default recipe, see https://montreal-forced-aligner.readthedocs.io/en/latest/user_

guide/configuration/acoustic_modeling.html.
5The compressed MP3 format of the original files may be a limitation for fine-grained acoustic analysis.
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formants over all speakers and utterances, but employ this heuristic for the case study data in

Section 3.5.

3.4 Data

Table 3.1 lists the Common Voice language datasets that we used and processed in this work, along

with several of their characteristics. Quantity of data in terms of hours of audio and number of

speakers is based on the validated subset from Common Voice.6 Table 3.1 further shows language-

related descriptions of each dataset. Vowel and consonant inventory sizes were determined by the

mappings and rules files from Epitran and the language description pages from XPF.

As an example of the descriptive utility of the corpus for phonetic research, we present two

sample vowel charts of the F1×F2 space: one from Chuvash with an inventory of eight vowels

(Figure 3.1) and one from Indonesian (Figure 3.2) with an inventory of five vowels. The Chuvash

dataset contains five hours of speech from 82 speakers, and the Indonesian dataset contains 23

hours of speech from 273 speakers.

3.5 Case study

The data in VoxCommunis can be a testbed for many research questions that concern phonetic and

phonological theory.7 We focus here on cross-linguistic constraints on the phonetics–phonology

interface, and specifically a uniformity constraint on phonetic realization. Phonetic realization

refers to the mapping from a sound segment’s phonological features to the corresponding phonetic

targets.

Evidence from cross-linguistic, cross-dialectal, and cross-speaker variation implies a range of

permissible phonetic realizations for each segment. Phonetic uniformity builds on a line of previ-

ous and related principles posited in the literature that emphasize reuse of phonetic targets that

correspond to a phonological primitive (Chodroff and Wilson, 2017; Fruehwald, 2017; Guy and

6Ardila et al. (2020) referred to a validated utterance as one that has a majority of up-votes from crowdsourced

listeners who verified that the text transcription matched the audio.
7This case study was largely inspired and written by co-author Eleanor Chodroff.
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Language Hours Speakers Utts G2P # V # C ISO 639-3 Genus Family

Abkhaz 2 28 1166 XPF 2 55 abk Northwest Caucasian Northwest Caucasian
Armenian 1 22 767 XPF 6 30 hye Armenian Indo-European
Bashkir 247 835 200869 XPF 9 28 bak Turkic Turkic
Basque 91 842 63916 XPF 5 24 eus Basque Basque
Belarusian 91 3620 182840 XPF 5 36 bel Slavic Indo-European
Bulgarian 5 35 3459 XPF 6 21 bul Slavic Indo-European
Chuvash 5 82 3748 XPF 8 14 chv Turkic Turkic
Czech 49 475 41567 XPF 5 25 ces Slavic Indo-European
Dutch 93 1315 79153 Epi 17 23 nld Germanic Indo-European
Georgian 6 109 4562 XPF 5 27 kat Kartvelian Kartvelian
Greek 13 178 11609 XPF 5 18 ell Greek Indo-European
Guarani 0.53 32 432 XPF 12* 17 gug Tupi-Guaraní Tupian
Hausa 1 13 1535 Epi 5 23 hau West Chadic Afro-Asiatic
Hindi 8 168 6805 Epi 12 41 hin Indic Indo-European
Hungarian 16 116 12529 XPF 14 25 hun Ugric Uralic
Indonesian 23 273 20649 Epi 5 24 ind Malayo-Sumbawan Austronesian
Italian 288 6125 194504 Epi 7 20 ita Romance Indo-European
Kazakh 0.73 57 532 Epi 10 26 kaz Turkic Turkic
Kurmanji Kurdish 45 258 37019 Epi 9 29 kmr Iranian Indo-European
Kyrgyz 37 206 29107 Epi 8 20 kir Turkic Turkic
Maltese 8 149 6195 Epi 6 25 mlt Semitic Afro-Asiatic
Polish 129 498 105585 Epi 8 28 pol Slavic Indo-European
Portuguese 84 1638 71155 Epi 10 25 por Romance Indo-European
Punjabi 1 22 1124 Epi 10 33 pan Indic Indo-European
Romanian 11 192 10351 XPF 7 20 ron Romance Indo-European
Russian 148 1609 99513 Epi 6 22 rus Slavic Indo-European
Sorbian (Upper) 2 18 1381 XPF 8 30 hsb Slavic Indo-European
Swedish 35 594 32626 Epi 17 21 swe Germanic Indo-European
Tamil 198 521 115193 Epi 10 24 tam Southern Dravidian Dravidian
Tatar 28 187 27416 XPF 10 23 tat Turkic Turkic
Thai 133 4537 107728 Epi 19 21 tha Kam-Tai Tai-Kadai
Turkish 30 850 29606 XPF 8 20 tur Turkic Turkic
Ukrainian 56 580 41056 XPF 6 32 ukr Slavic Indo-European
Uyghur 41 281 24970 Epi 8 29 uig Turkic Turkic
Uzbek 0.24 5 161 Epi 6 25 uzb Turkic Turkic
Vietnamese 3 76 2927 XPF 9 26 vie Viet-Muong Austro-Asiatic

Table 3.1: This release of VoxCommunis includes datasets from 36 languages with hours of speech
ranging from 0.24 to 288. Half of these languages were processed with Epitran (“Epi”), and half
were processed with XPF G2P methods. Vowel and consonant inventory sizes, ISO 639-3 codes,
genus, and family descriptions of each language are included as well. *While Guarani has 12
phonemic vowels, the nasal contrast was not transcribed in the output of the XPF G2P, so our data only
reflects 6 vowels.
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Figure 3.1: Chuvash vowels in F1×F2 space (Hz). Each point corresponds to a speaker-specific
pair of means and is coded for the formant extraction setting. Labels are centered on the grand
means for each category, and ellipses correspond to ± one standard deviation from the mean across
speakers.

Hinskens, 2016; Maddieson, 1995; Ménard et al., 2008; Keating, 2003). In essence, uniformity en-

forces economy and similarity. Similar principles to uniformity can be found in gestural economy,

which requires reuse of individual gestures across multiple speech sounds (Lindblom, 1983; Lind-

blom and Maddieson, 1988; Maddieson, 1995), and the Maximal Use of Available Controls (MUAC)

principle, which requires reuse of perceptuomotor controls in the realization of a distinctive feature

Ménard et al. (2008); Schwartz et al. (2012).

Chodroff and Wilson (2022) extended this notion of uniformity and considered three potential

types of uniformity: pattern uniformity, target uniformity, and contrast uniformity to account for the

ways in which the specification of phonetic targets may be constrained across talkers and languages.

With our data, we explore the influence of target uniformity on the phonetic realization of vowels.

Target uniformity requires that the mapping from a distinctive feature value to its corresponding

phonetic target be uniform for all phonological surface segments specified with the feature value.
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Figure 3.2: Indonesian vowels in F1×F2 space (Hz). Each point corresponds to a speaker-specific
pair of means and is coded for the formant extraction setting. Labels are centered on the grand
means for each category, and ellipses correspond to ± one standard deviation from the mean across
speakers.

We focus here on the realization of vowel height and backness features, with the corresponding

phonetic targets approximated using the acoustic measures of vowel F1 and F2.

Though languages will likely differ considerably in the overall phonetic realization of a given

distinctive feature, such as vowel height, the set of segments that share the featural segmentation

should be strongly correlated with one another and be uniform in realization. Assuming there is

underlying identity in phonetic realization, we should observe strong correlations of vowel F1 for

vowel segments that are specified with the same height feature. Correspondingly, we should also

observe strong correlations of vowel F2 for segments specified with the same backness feature.

Indeed, previous studies have found some support for these predictions. Vowel F1 is highly cor-

related between vowels with shared phonological height across speakers within a language (e.g.,

English: Watt, 2000, French: Ménard et al., 2008, Portuguese: Oushiro, 2019, six unique lan-

guages: Schwartz and Ménard, 2019). Similar to the present study, Salesky et al. (2020) also
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Figure 3.3: Correlation of mean F1 between [i] and [u] across 30 languages with the best-fit re-
gression line. Each point represents a setting- and language-specific pair of F1 means. For example,
the blue triangle to the bottom left plots the mean F1 for [u] against the mean F1 for [i] among all
low-setting speakers for (Upper) Sorbian. The overall Pearson correlation value is r = 0.83 and the
significance value is p < 0.001. Bar graphics above and to the right of the chart are histograms that
demonstrate the frequency at different hertz values for [i] and [u].

examined the predictions of uniformity in vowel F1 and F2 across languages in pairwise correla-

tions over approximately 10 to 40 languages. The correlations of mean F1 were generally strongest

between vowels with a shared height, and correspondingly, for mean F2, correlations were gen-

erally strongest between vowels with a shared backness feature. The patterns, however, were not

perfect, and along the F1 dimension, the correlations were moderate to strong for many vowel

pairings regardless of their phonological specification. To demonstrate the utility of this corpus for

large-scale cross-linguistic phonetic analysis, we look here to replicate these previous findings.

3.5.1 Methods

For the analysis, we employed the set of formants described in Section 3.3.3 in which either the

high or low formant extraction setting was used for each speaker. Focusing on F1 and F2, we used
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Figure 3.4: Correlation of mean F1 between [e] and [o] across 22 languages with the best-fit re-
gression line. Each point represents a setting- and language-specific pair of F1 means. For example,
the red dot to the top right plots the mean F1 for [o] against the mean F1 for [e] among all high-
setting speakers for Basque. The overall Pearson correlation value is r = 0.74 and the significance
value is p < 0.001. Bar graphics above and to the right of the chart are histograms that demonstrate
the frequency at different hertz values for [e] and [o].

an average of three formant points at and around the midpoint for each vowel: the value estimated

from the midpoint itself and the values 10 ms before and after the midpoint. We removed vowels

with an F1 or F2 beyond two standard deviations from the vowel- and setting-specific means within

a language, and discarded vowels whose duration was greater than 300 ms, under the assumption

that these were alignment or formant-tracking errors. In addition, only vowel categories produced

by at least five speakers per high or low setting in a given language were retained in the analysis.

We further analyzed correlations for vowel pairings shared by at least ten languages. As there were

22 correlations in each formant analysis for a total of 44 correlations, we adjusted the significance

level of α = 0.05 to α = 0.001 using a Bonferroni correction.
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V1 V2 Height # Lang r p

i u ✓ 31 0.83 < 0.001
e o ✓ 22 0.74 < 0.001
e a 19 0.64 < 0.001
E O ✓ 14 0.64 < 0.001
o a 22 0.53 < 0.001
u o 28 0.46 < 0.001

Table 3.2: Pearson correlations (r) of mean F1 in Hz between vowel categories. Only correlations
that reached significance after Bonferroni correction (α = 0.001) are shown here. As formalized
in the present analysis, phonetic uniformity predicts strong correlations of mean F1 among vowels
with a shared height specification, which is indicated by the checkmark in the table.

V1 V2 Back # Lang r p

E a ✓ 11 0.77 < 0.001
i O 13 0.74 < 0.001
i A 12 0.67 < 0.001
i a ✓ 24 0.67 < 0.001
e a ✓ 19 0.58 < 0.001
i E ✓ 18 0.57 < 0.001

Table 3.3: Pearson correlations (r) of mean F2 in Hz between vowel categories. Only correlations
that reached significance after Bonferroni correction (α = 0.001) are shown here. As formalized
in the present analysis, phonetic uniformity predicts strong correlations of mean F2 among vowels
with a shared backness specification, which is indicated by the checkmark in the table.
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3.5.2 Results and discussion

For each of the F1 and F2 analyses, six pairwise correlations reached significance, as shown in

Tables 3.2 and 3.3. For F1, three of the six significant correlations were consistent with the pre-

dictions of target uniformity. We replicate previous significant correlations between [i] and [u],

as well as between [e] and [o] across languages (see Figures 3.3 and 3.4). Similar to the present

analysis, Salesky et al. (2020) also found significant correlations of mean F1 for [i]–[u], [e]–[o],

and [e]–[a] pairings across languages. Overall, many F1 correlations were strong in magnitude

even if they did not reach significance (see also Salesky et al., 2020).

For F2, four of the six significant correlations were consistent with the predictions of target

uniformity. Though we did observe several significant correlations that were consistent with the

predictions of uniformity, the pattern of correlations did not replicate very well between the current

VoxCommunis and previous VoxClamantis analyses. The significant correlations of mean F2 for

[E]–[a], [i]–[O], and [i]–[a] found here did not reach significance in the VoxClamantis analysis.

In fact in VoxClamantis, the correlation for [i]–[O] was opposite in direction (r = −0.63) and the

correlation for [i]–[a] was effectively non-existent (r = 0.06); the correlation for [E]–[a] was simply

weaker in magnitude at r = 0.32. These discrepancies could be related to a more idiosyncratic

realization of F2 patterns across languages, which would nevertheless be insightful for phonetic

theory.

Finally, many vowels were also moderately to strongly correlated with [a] along both the F1

and F2 dimensions. In this case, we speculate that the open vocal tract of [a] could be very

informative of speaker anatomy, and the correlational strength could reflect anatomical similarity

in the productions. That is, the same speaker contributed to the language-specific mean for both

[a] and a vowel with which it is correlated (e.g., [e] for F1). Important to note though, is that

anatomical similarity is unlikely to account for all strong correlations. The correlational strengths

vary widely across vowel pairings, regardless of the fact that each speaker contributed to each of

the means.

Overall, the current analysis replicated many of the F1 findings of previous analyses, such as

the VoxClamantis analysis in Salesky et al. (2020), among others (Ménard et al., 2008; Oushiro,
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2019; Schwartz and Ménard, 2019; Watt, 2000). Though some F2 correlations were consistent with

the predictions of target uniformity, so were several different ones in the VoxClamantis analysis.

Moreover, some of the significant F2 correlations found here were entirely different in nature (e.g.,

magnitude and even direction) in the VoxClamantis analysis. There are several potential factors

that may have led to this discrepancy. First, the VoxClamantis had converted formants into ERB

units (logarithmic), whereas the present study assessed formant variation in the hertz (linear)

space. This could have an outsized impact on the higher F2 values relative to the lower F1 values.

Second and not incompatibly with the first point, these findings may simply reflect an overall

more idiosyncratic realization of vowel F2 across languages. It could be that target uniformity

does not apply consistently to vowel backness, or that the assumed phonological and/or phonetic

specifications is ill-defined for vowel categories. At the phonological level, we had assumed the

existence of a vowel backness feature, and at the phonetic level, we assumed that F2 would be

a reasonable approximation of the phonetic target corresponding to the vowel backness feature.

These assumptions warrant additional research.

3.6 Conclusion

The VoxCommunis Corpus aims to facilitate large-scale phonetic analyses, with the peripheral goal

of improving speech technologies for a broad range of languages. We described our methods for

processing 36 language datasets from the Common Voice Corpus, including G2P conversion, acous-

tic model training, and vowel formant feature extraction. We presented our data with descriptive

and quantitative measures, and highlighted the utility of VoxCommunis in a cross-linguistic case

study of phonetic uniformity.

Future directions include expanding this resource in several ways. Phonetic transcriptions for

the same phoneme can vary across languages depending on an individual linguist’s or a particular

resource’s preference. Because of this ambiguity, G2P tools have the potential to improve in quality

(or accuracy) and in coverage. Employing other existing pronunciation lexicons and G2P tools

(e.g., WikiPron, Lee et al., 2020; and Phonetisaurus, Novak et al., 2016) on the Common Voice
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Corpus would be beneficial. Where overlap of language coverage between G2P systems occurs, one

could also compare the quality of these methods.

Scientifically, future analyses could include testing phonetic and phonological theories like Dis-

persion Theory, which predicts that phonemes in a language’s inventory are maximally “dispersed”

across phonetic space in order to preserve perceptual distinction (Liljencrants and Lindblom, 1972).

Additional research on phonetic uniformity (i.e., as it applies to different segment–target pairings)

is also warranted. As VoxCommunis is made freely available to our broader scientific communities,

it can inform additional typological or even language-specific studies at other linguistic levels (e.g.,

syntax, morphology, etc.). Phonetic insight stemming from this corpus may inform and improve

automatic speech recognition, text-to-speech systems and automatic speaker adaptation processes,

especially for languages with few linguistic resources.

Postlude

Since the release of this VoxCommunis dataset, there have been newer releases of the VoxCommu-

nis and Common Voice datasets. What is currently available as of April 2025 is as follows: Common

Voice is up to version 21 and covers 134 language varieties.8 VoxCommunis spans 56 languages

with updated models around version 17 of the Common Voice releases.

Several studies have utilized this data for relevant research. Zhu et al. (2024) used a portion of

VoxCommunis, combined with other data, to develop a multilingual keyword spotting system and

a multilingual forced aligner. Jones and Renwick (2024) trained a speech technology tool using 11

hours of Italian data from VoxCommunis in order to detect marginal contrasts in Italian vowels for

sociophonetic research. Pricop (2024) studied consonantal f0 effects in Catalán using over 3,000

hours from the newer release of VoxCommunis that covered Common Voice versions 16 and 17.

Moran et al. (2024) sampled ten diverse language datasets from VoxCommunis to study how the

variation of vocal tracts impacts phonetic diversity. It is encouraging to see the utility of this corpus

on a variety of speech research ranging from linguistics to computer science and biology.

We have answered RQ1 in providing viable methods for processing multilingual data in a semi-

automated pipeline. However, after the creation of this initial corpus, one might question the
8Not all of these 134 varieties have their transcriptions validated.
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quality of extracted alignments and measurements, as none of the output was manually corrected.

For instance, a researcher had contacted us and shared that the Armenian dataset from Common

Voice was from speakers of two distinct dialects, Eastern and Western Armenian. Dialect metadata

was not included in the release. This issue, in addition to another issue where the G2P system did

not include schwa epenthesis, made the Armenian VoxCommunis data unusable. The following

chapter will provide methods to analyze the quality of VoxCommunis and other similarly derived

corpora.
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CHAPTER 4

Analyzing Vowel Formant Outliers from a Corpus

Phonetics Pipeline

Overview

While the previous chapter addressed RQ1 in how to apply a corpus phonetics pipeline to process

multilingual data, the question from RQ2 on the quality of this processed data becomes more rele-

vant. This chapter investigates the quality of the VoxCommunis Corpus for three language datasets.

We aim to understand the types of outliers that the corpus phonetics pipeline can produce. We will

observe that the method of G2P has a strong impact on how much vowel formant measurements

vary. This chapter is largely equivalent to the conference proceedings of Interspeech titled An Outlier

Analysis of Vowel Formants from a Corpus Phonetics Pipeline (Ahn et al., 2023).

4.1 Abstract

Automated systems in a corpus phonetics pipeline may involve grapheme-to-phoneme conversion,

forced alignment, and acoustic-phonetic measurement, and each of these stages requires a strong

assumption regarding the output quality. We investigated these assumptions by auditing outliers in

vowel formants from two multilingual read speech corpora, CMU Wilderness and Mozilla Common

Voice, across three languages: Hausa, Kazakh, and Swedish. From this audit, we developed a

novel outlier taxonomy that included broad outlier categories of transcript errors, alignment errors,

formant tracking errors, linguistic variations, and fine samples. We showed the utility of this outlier

analysis in identifying weaknesses in corpus-specific and corpus-general pipeline assumptions, and

discovering characteristics of particular languages. From a careful analysis of outliers, we can

discern how to better account for the true variation in a language, while reducing the true noise

from the system and data.
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Figure 4.1: An automated pipeline that we analyze in this work. It takes speech and its correspond-
ing text through a grapheme-to-phoneme (G2P) system to produce a lexicon of phone sequences.
Then these are used to develop acoustic models and produce time-aligned phone segments. Finally,
vowel formants are extracted for analysis.

4.2 Introduction

The growing availability of multilingual speech corpora and speech processing tools has enabled

large-scale cross-talker and cross-linguistic investigations of acoustic-phonetic variation. Acoustic-

phonetic analysis has typically depended on a data processing pipeline that involves the collection

of speech recordings, a time alignment of the relevant units of analysis to the speech signal, and

acoustic-phonetic measurements of the relevant units from the speech recording (Figure 4.1). Re-

searchers commonly implement this pipeline manually, with utmost consistency and minimal bias;

however, researchers can benefit in terms of time, consistency, replicability, and scalability by au-

tomating aspects of this pipeline.

Nevertheless, automation requires that the researcher commit to assumptions that may not

always be met. In this chapter, we investigate the degree to which underlying assumptions of

automation may be violated in two multilingual read speech corpora through an error analysis of

automatically extracted vowel formants. We ultimately suggest that a partial manual audit should

always be implemented, but the presented patterns provide some insight to future researchers

about likely problematic locations in the overall pipeline.
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In processing a large, read speech corpus, we have identified a series of steps that are frequently

automated. At each of these steps, the researcher makes certain assumptions about the data and

input at hand. If any assumption of a given step is violated, it will have downstream effects on the

resulting segmentation and measurement quality.

First, with read speech data, it is frequently assumed that the script is the transcript. Though

the participant may have intended to read the script faithfully, a script will not contain speech

errors or disfluencies that may have occurred.

Second, in converting the words of the script or transcript to a phonetic transcription, it is

frequently assumed that the canonical phonetic transcription is an accurate phonetic tran-

scription. Grapheme-to-phoneme (G2P) systems and pronunciation dictionaries convert individual

words into sequences of sound units that are estimated from the orthography. These can be rule-

based, linguist-curated systems such as Epitran (Mortensen et al., 2018) or XPF (Cohen Priva et al.,

2021), or ones that involve neural network models (Hammond, 2021; Makarov and Clematide,

2018). These models measure accuracy with Word or Phone Error Rate compared to a gold phone

transcription (Ashby et al., 2021; Lee et al., 2020; Mortensen et al., 2018; Novak et al., 2016).

In some cases, multiple phonetic transcriptions can be provided for a given word, but the set of

transcriptions is nevertheless constrained.

Third in this pipeline is to conduct phonetic forced alignment, which time-aligns the output

phone sequence to the audio. Forced aligners rely on acoustic models, which learn distributions of

discrete sound units. The forced alignments can be evaluated with segment boundary time displace-

ment (Gonzalez et al., 2020; McAuliffe et al., 2017), a binary accuracy overlap score (Mahr et al.,

2021), or even overlap rate (Gonzalez et al., 2020); however, these scores rely on existing gold

segmentations, which many researchers may not have for their data. It is therefore frequently as-

sumed that the segmentation is viable and accurate given the phonetic transcription and acoustic

model.

Last in this pipeline is to extract acoustic-phonetic measurements. Regardless of technique, the

measurement frequently relies on an assumption of certain parameters. In this chapter, we focus on

formant extraction, which measures the spectral frequency of high energy concentrations, which
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typically reflect resonances of the vocal tract. The first two vowel formants are especially represen-

tative of vowel quality features such as height and backness (Ladefoged and Johnson, 2014). Errors

can occur when the tracker incorrectly identifies a formant as an adjacent formant or harmonic,

or the tracker estimates the spectral prominence incorrectly (Chen et al., 2019). Evaluation of for-

mant extraction typically uses mean absolute differences between the gold standard and automatic

formant estimates (Barreda, 2021; Evanini et al., 2009). These evaluation methods once again

rely on gold data, which many researchers may not have. With the exception of any coarse outlier

exclusion protocol (e.g., removing all tokens beyond some threshold), it is otherwise frequently

assumed that the parameters are accurately specified and the acoustic-phonetic measurement

is viable and accurate.

At the end of this pipeline, the researcher ideally wants an acoustic-phonetic measurement that

represents the targeted speech. While averages of the data may cut through any noise generated by

the assumptions, the present work specifically focuses on the outlying data: these are by definition

non-representative tokens of the targeted speech. In a manner similar to an error analysis, this

chapter addresses how we can categorize and understand the outliers in vowel formants to gain

deeper insight into our assumptions of quality from an automated pipeline that includes grapheme-

to-phoneme (G2P) mapping, forced alignment, and vowel formant extraction. In other words,

what are the types of “errors” that outlying vowel formants represent, how often do they occur, and

why do they occur? This analysis ultimately reveals characteristics of particular languages and data

sources through their violations of different assumptions in the pipeline; these are then investigated

in a set of case studies.

4.3 Data

The present outlier analysis focuses on subsets of two massively multilingual corpora: the CMU

Wilderness Corpus (Black, 2019) and its derivative VoxClamantis Corpus (Salesky et al., 2020),

and the Mozilla Common Voice Corpus (Ardila et al., 2020) and its derivative VoxCommunis Cor-

pus (Ahn and Chodroff, 2022; see also Chapter 3). The CMU Wilderness Corpus contains audio

recordings of the New Testament in nearly 700 languages; each language has around 20 hours of
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data that come from a few speakers, mostly male. The Common Voice data has over 100 languages

represented with spoken utterances collected and validated by internet users. These corpora were

selected because they are stylistically similar (consisting of read speech), cover a broad range of

languages, and provide phonetic alignments and vowel formants.

We chose three languages from both corpora for our analysis. Hausa (ISO639-3:hau) is a

Chadic language from the Afro-Asiatic language family, spoken around the border between Niger

and Nigeria (Wolff, 2023). It used to be transcribed in Ajami, an Arabic alphabet, until the early

1900s when the Latin alphabet became the standardized script. As a tonal language, Hausa has

between six and ten vowels (Moran and McCloy, 2019). Vowel length is phonemic, which is not

distinguishable from the Latin script. Kazakh (ISO639-3:kaz) is a Turkic language spoken primar-

ily in Kazakhstan, as well as parts of China, Uzbekistan, Mongolia, and Afghanistan (Bri, 2023a).

Though it uses mainly the Cyrilic script in modern days, it used the Arabic script prior to the 1900s.

Linguists do not agree on the number of vowels in its phonemic inventory, as there have been

reports ranging from five to eleven (McCollum and Chen, 2021).1 Swedish (ISO639-3:swe) is a

Germanic language spoken mainly in Sweden, and it uses the Latin alphabet (Bri, 2023b). There

are nine orthographic and phonemic vowels, and each vowel has two corresponding allophones: a

long vowel and a short vowel (Riad, 2013).

4.4 Methodology

4.4.1 Data preparation

We downloaded the language-specific data from the Wilderness corpus2 (sampled at 16kHz and

distributed as MP3 files) and from Common Voice3 8.0 (as 32kHz MP3 files), and converted these to

mono-channel 16kHz waveforms. The conversion to WAV was to satisfy some system assumptions;
1As shown in Table 4.1, the two Kazakh datasets used in our work follow two separate inventories: one with six

vowels and the other with eleven.
2Each reading was individually downloaded from https://www.faithcomesbyhearing.com/

audio-bible-resources/mp3-downloads.
3Only the validated utterances were downloaded.
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the files were lossy from the original MP3 format. The six datasets spanning these two corpora and

three languages were all processed by the Epitran G2P toolkit (Mortensen et al., 2018). While the

forced alignment for the VoxClamantis (i.e., Wilderness derivative) corpus had used a multilingual

ASR model (Wiesner et al., 2019) trained with Kaldi (Povey et al., 2011), we trained new acoustic

models and generated alignments on the Common Voice data with the Montreal Forced Aligner

(McAuliffe et al., 2017), which also utilizes Kaldi.

The vowel formants were extracted with Praat (Boersma and Weenink, 2019) using the Lin-

ear Predictive Coding (Burg method) algorithm. As the Wilderness data was impressionistically

dominated by male speakers, the data was processed with a five-formant ceiling of 5,000 Hz, as

recommended for the male vocal tract. The Common Voice data was processed with a five-formant

ceiling at both 5,000 Hz and 5,500 Hz (recommended for the female vocal tract). As Common

Voice had a greater mixture of male and female speakers, a clustering process was applied to clas-

sify each speaker as having a high or low formant range (see Section 3.3.3). We used speech from

only the low-setting speakers for a better comparison to the Wilderness data. Since the size of

the Swedish Common Voice dataset was much larger than the other two Common Voice language

datasets (see Available Corpus in Table 4.1), we down-sampled it by randomly selecting 1,000 ut-

terances as the starting point for discovering outliers. Formant values were taken at the midpoint

from the Wilderness data, and as the mean of values at three timestamps from the Common Voice

data: the midpoint, 10 ms prior to the midpoint, and 10 ms after the midpoint. This corresponds

to the primary extraction technique from each paper. Table 4.1 gives an overview of the data. Fig-

ure 4.2 shows speaker-averaged F1×F2 plots for Common Voice datasets, demonstrating the vowel

space across the three languages.

4.4.2 Outlier discovery

To identify outlying formants, we implemented the following procedure. Leys et al. (2018) showed

that using the Mahalanobis distance metric based on the Minimum Covariance Determinant is ef-
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Figure 4.2: Hausa, Kazakh, and Swedish vowels from Common Voice data in F1×F2 space (Hz).
Each point represents a speaker-specific pair of means, and vowel labels are placed over the grand
means for each vowel. The ellipse covers ± one standard deviation from the mean across speakers.
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fective for discovering multivariate outliers.4 Squizzero and Wassink (2022) reinforced that this

metric discovered outliers more accurately than using standard deviations or median absolute de-

viations for vowel formants. We followed suit and fitted the first two formants into one bivariate

Gaussian model5 per vowel per dataset (i.e., one model for Wilderness Kazakh /i/).6 Each point’s

Mahalanobis distance from the mean followed a chi-square distribution, from which we estimated

the tail 0.1% of the distribution. This percentage corresponds to an alpha value of 0.001, which

is a conservative estimate for outlier exclusion. With two degrees of freedom from measuring two

formants at a single timestamp, the outlier threshold corresponded to a Mahalanobis distance of

13.82. From these outliers aggregated across all vowels per dataset, 100 samples were randomly

selected for manual annotation. We also randomly selected 40 “near-mean” vowels per dataset

that were close to the center of each vowel distribution (Mahalanobis distance less than 1.0) for

annotation, as a sanity check and to compare against the outliers. A total of 600 outliers and 240

“near-mean” vowels were analyzed across all datasets. Figure 4.3 displays the outlier discovery

process with all /e/ samples in the Kazakh Common Voice data.

4.4.3 Outlier annotation

From our vowel formant audit of the outlying and near-mean vowels, we developed a new taxon-

omy of errors as a way to evaluate our assumptions from parts of the automated pipeline. First,

though we assume the script is the transcript, deviations from the script are most directly reflected

in Transcript Errors. Second, though we assume the G2P system provides a faithful phonetic tran-

scription of the speech, if the G2P is not accurate, it could be reflected in the surfacing of Transcript

Errors, Alignment Errors, or Linguistic Variations. Some of these violations also arise not necessar-

ily from “accuracy” of the G2P system, but rather the chosen granularity of the G2P system (e.g.,

broad or narrow transcriptions). The Alignment Error and Formant Error categories respectively
4FAVE also used Mahalanobis distance to select the most reliable formants in their formant tracking method (Yuan

and Liberman, 2008).
5Models were implemented with the MinCovDet (Minimum Covariance Determinant covariance estimator) package

from Scikit-Learn.
6The minimum number of times the vowel must occur was 100.
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Figure 4.3: A representation of the outlier discovery method for the vowel /e/ in the Kazakh
Common Voice data. Data points with a Mahalanobis distance greater than the threshold value
13.82 (i.e., outliers) are marked in red, inliers are in black, and near-mean samples (distance less
than 1) are in green. The ellipses in shades of blue represent the shape of the bivariate distribution.

reflect poor performance from the forced aligner and formant tracker. Multiple error types could

be applied to a single vowel in a multi-label strategy. The taxonomy includes five broad categories

and several fine-grained subcategories:

1. Transcript Error

Extra Sounds: Extra phones, syllables, or words are spoken but not transcribed.

Extra Transcript: Extra phones, syllables, or words are transcribed but not spoken. If only

the target vowel is not spoken, it is a Linguistic Deletion (see below).

Broad: The phone sequence does not appear to match the audio at all.

2. Alignment Error

Target Overlap: The midpoint of the window does not capture the target vowel, and the

window either includes extraneous phones or it does not include the full vowel.
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Available Corpus Analyzed Corpus

# Total
Hours

# Total
Speakers

# Analyzed
Hours

# Low
Speakers

# Low
Utts

# Vowel
Types

# Vowel
Tokens # Outliers % Outliers

Wilderness
Hausa 20:40 5+∗ 20:40 5+∗ 9626 5 303577 9698 3.19%

Kazakh 18:50 5+∗ 18:50 5+∗ 8085 6‡ 204701 22148 10.82%
Swedish 16:45 1∗ 16:45 1∗ 9516 16 182423 15106 8.28%

Common Voice v8
Hausa 3:23 17 0:57 8 772 5 11490 583 5.07%

Kazakh 1:27 72 1:06 46 796 11‡ 10967 642 5.85%
Swedish 39:28 674 1:02 203† 1000† 16 11230 513 4.57%

Table 4.1: The Available Corpus was used for developing the acoustic models, while the Analyzed
Corpus was used for the outlier analysis (in the case of Common Voice, only low-formant setting
speakers were selected). ∗The number of speakers for the Wilderness data were estimated from an
auditory impression of sampled data. †Swedish originally had 19,168 low utterances and 468 low
speakers, before subsetting. ‡The number of Kazakh vowel types differed across dataset types due
to utilizing different versions of the G2P tool, Epitran.

Broad: There is an alignment issue beyond Target Overlap. However, it can be observed that

some of the transcript can be heard in the audio.

3. Formant Error

The measured formant value does not reflect the frequency of the relevant energy band in

the vowel.7

4. Linguistic Variation

Deletion: Only the target vowel is absent, while the surrounding phones are present.

Change: A different vowel than the target vowel is produced.8

5. Fine

There is no apparent error.

25% of each dataset’s samples were annotated by five trained linguists, while the remaining

75% of samples only had one annotator. Inter-annotator agreement across the five annotators was
7Formant errors can be due to the tracker getting the wrong formant (e.g. F3 instead of F2) due to coarticulation and

other audio issues where the spectrum is too light, or the vowel is devoiced, etc.
8The observed vowel may or may not be an item in the language’s inventory.
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calculated with Krippendorff’s Alpha (Krippendorff, 2018). Because the labels could be multiply

selected, we followed Martín-Morató and Mesaros (2021) and calculated the agreement for each

label. The scores were found to be reliable. Agreement across the five annotators had an average

Krippendorff’s Alpha of 0.86, aggregated across each of the outlier categories. Agreement tended

to be highest for Wilderness outliers (0.9, compared to Common Voice outliers at 0.83) as well as

for Transcript Errors (0.91, compared to Linguistic Variations at 0.84).9

To produce gold labels for the samples that were annotated by all five annotators, the following

heuristic was applied.10 For each possible label (e.g., Alignment: Target Overlap), if a majority (i.e.,

three out of five annotators) marked it positive, it was a positive label. If a minority (i.e., only one

or two annotators) marked a label positive, then the label from the “most reliable annotator” was

assigned. The “most reliable annotator” was designated as the annotator with the highest cosine

similarity between their labels and the majority gold labels.11

4.5 Results

This section addresses the distribution of outlier vowel category types across languages and datasets.

Table 4.1 provides an overview of the data and aggregate quantity of outliers (as determined by

the Mahalanobis distance); Figure 4.4 provides raw counts of outlier types across 600 annotated

outlying vowels.

As shown in Figure 4.4, the Wilderness Corpus contained more Transcript and Alignment Errors,

especially from the Kazakh repository. Even Kazakh’s near-mean vowels contained many Transcript

and Alignment errors. This was likely an artifact of the Wilderness data processing: while the script
9Inter-annotator agreement methodology and calculations were conducted by Sam Briggs.

10This heuristic for aggregating gold labels was developed and executed by Anna Batra.
11The Formant Error category was added after all the data was annotated, so the “most reliable annotator” re-

annotated all samples originally marked as Fine, to differentiate whether or not the vowel experienced formant tracking

errors. Occasionally, other categories (e.g., Alignment Error) were found to apply instead of Fine and were re-annotated

as such.
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Figure 4.4: Counts of 600 outliers annotated across five broad categories in Wilderness (left) and
Common Voice (right).

was manually aligned to the audio at the chapter level, individual chapter sentences were automat-

ically aligned, resulting in some mismatched audio segments (Black, 2019). Meanwhile, the Com-

mon Voice Corpus had fewer Transcript Errors as the script-to-audio utterances were considerably

shorter and manually validated; in addition, Common Voice had overall more Fine samples. Nev-

ertheless, Common Voice had relatively more Formant Tracking Errors and Linguistic Variations,

which reveal a more nuanced violation of our pipeline’s assumptions.

Examining the sub-categories more closely in Figure 4.5, we observe that there were different

patterns occurring within the Linguistic Variation broad category. Hausa had many more vowel

changes than deletions, while the Kazakh data from Common Voice had most of its linguistic out-

liers due to vowel deletion. These will be analyzed in Section 4.6 as phonological processes that

were not captured by the G2P assumptions.

Beyond strict counts, we can further ask how “far off” each type of outlier is by comparing the

Mahalanobis distances of each outlier type. Among the set of 600 annotated outliers, Figure 4.6

displays a rough trend that Trancript and Alignment Errors stray furthest from the mean, while Fine

outliers are closer to the mean. This follows the intuition in the specification of these categories.

Additionally, we seek to further understand: What factors are correlated with vowel formants’
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Figure 4.6: The average Mahalanobis distance from the mean across 600 annotated outliers, with
each color representing a separate language.

distance from the mean? To answer this question, we ran a linear mixed effects regression analysis

(Kuznetsova et al., 2017) in R (R Core Team, 2022) over all the vowels (724,132 samples) in the

Wilderness and Common Voice “analyzed corpora.” The dependent variable was the Mahalanobis

distance, which was a continuous, positive value. Fixed effects were vowel duration, vowel height

(high, mid, or low), vowel backness (front, central, or back), vowel roundness, and whether the

preceding and following phones were silent. We also accounted for the random effects of language

(one of Hausa, Kazakh, or Swedish) and dataset (Wilderness or Common Voice).12

Among the fixed effects, it appeared that vowel quality was correlated with higher Mahalanobis

distances. High vowels and front vowels were more outlying (p < 0.001), back vowels were less

outlying (p < 0.001), and rounded vowels were more outlying (p < 0.001). When either the

preceding or following environments contained silence, it also increased the vowel’s distance from

the mean (p < 0.001).13 From this finding, we can recommend that researchers be more cautious

in dealing with vowels that are high, front, and rounded–when working with automatically aligned

data. Vowels at the beginning or end of an utterance, as marked by silence in its preceding or
12The analysis could not run with the additional random effect of speaker, given that there were not enough annotated

samples per unique speaker.
13When removing all samples that contained silence in any environment (with 595,081 samples remaining), a vowel’s

formants were more outlying when it was followed by an obstruent than by a sonorant (p < 0.001).
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following environment, can also present challenges.

4.6 Case studies

Our manual audit of these outliers revealed linguistic phenomena that were not captured by our

G2P assumptions.14 The choice of granularity in the phonetic transcription can have downstream

effects. If the G2P output has too narrow a transcription, it can inhibit cross-linguistic comparisons

of the sound inventory. If the G2P output is too broad, it may not accurately represent sounds

that undergo phonological processes like allophony, reduction, or assimilation. In both cases, the

G2P output may not consistently represent the actual pronunciation. In our data, the broad G2P

output resulted in a series of outliers that appeared to reflect systematic phonetic or phonological

alternations in Kazakh and Hausa.

4.6.1 High vowel deletion in Kazakh

Results from our annotations indicated that Linguistic Deletions occurred most often in the Kazakh

Common Voice data. According to McCollum and Chen (2021), high, short vowels in Kazakh are

more susceptible to reduction than other vowels. To test this, we conducted a logistic regression

in R (R Core Team, 2022) to determine if high vowels are more correlated with vowel deletion.

Across all 840 annotated samples (outliers and near-means), high vowels were 1.7 times more

likely to be deleted than non-high vowels (p < 0.001). When adding language as an independent

variable to the regression, vowels in Kazakh were 2.4 times more likely to be deleted than in other

languages (p < 0.001).15 Interestingly, the analyzed cases of vowel deletion frequently occurred in

sibilant environments. Our analysis might have picked up on this since sibilants, like vowels, can
14The inspiration and foundational work for each of these case studies comes from Anna Batra, Sam Briggs, Emma

(Miller) Rhoden, and Qianyue (Ivy) Guo.
15Another notable characteristic of the deleted vowels in Kazakh is that upon annotation, it was sometimes difficult to

differentiate between whether the vowel was completely deleted or just devoiced (potentially due to voicing assimilation

in voiceless environments). Future outlier taxonomies could include an additional category of devoiced vowels as a

subcategory of Linguistic Variation outliers.
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have measurable formants, but at a considerably higher frequency than would be expected from a

vowel.

4.6.2 Vowel length in Hausa

Our second case study examines the implications of vowel length in the G2P transcription of Hausa.

Among our annotated Hausa vowels, 44% of the outliers and 64% of the near-means were marked

as Linguistic Change. The annotators indicated that they perceived these as reduced and more

centralized, e.g., [@, 2, I, U]. Essentially, the centroids of the Hausa vowel formants were not located

in the phonetic positions that the G2P inventory might suggest: /a, e, i, o, u/. While linguists do not

agree on the exact vowel inventory of Hausa, most Hausa inventories from PHOIBLE include both

long and short vowels which could vary in quality (Moran and McCloy, 2019). Vowel length is also

not entirely predictable from the orthography. Though there is a predictable pattern that the vowel

in a CVC syllable is always short (Newman, 2022), vowel length is not predictable in open syllables

(i.e., CV). Therefore, even if the G2P system created separate long and short vowel categories and

implemented this one rule, it would miss the open syllable alternation. The lack of vowel length

distinction in our G2P system, as well as potential vowel quality differences between long and short

vowels, appeared to produce inaccurate distributions of vowel formants in our analysis.

4.6.3 Kazakh ‘e’ /je/

Lastly, we observed during the annotation process that in Kazakh, the Cyrilic grapheme ‘e’ (typi-

cally pronounced [je]) has alternate phonetic productions in real speech, even though the Epitran

G2P system always transcribed ‘e’ as [je]. We ask the question: What are systematic environments

that affect the phonetic pronunciation of /e/? To begin, we analyzed all occurrences of ‘e’ within 30

utterances from the Kazakh Common Voice dataset, which amounted to 46 unique words that con-

tained ‘e’. From these, we developed phonological rules to account for these alternations. Table 4.2

displays two of these rules, along with examples.

These rules capture some of the reduction occurring in Kazakh /je/, and mainly that more

often than not, the grapheme ‘e’ is phonetically realized as one of [i], [I], or [e]. Other rules not
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Rule Description Example

/je/ → [i] / #C[+stop] C+# In monosyllabic words, /je/ is
reduced to [i] after a stop con-
sonant and before a coda.

/kjeN/ → [kiN]

/je/ → [i] / C[-son] C[+son] In polysyllabic words in a
stressed environment, /je/ is
reduced to [i] after an obstru-
ent and before a sonorant.

/sAwdAgjer/ → [sAwdAgir]

Table 4.2: Two hypothesized phonological rules for the reduction of the grapheme ‘e’ /je/ in
Kazakh.

included in this table tell a similar story of /je/ reduction in closed syllable environments and after

consonant clusters.16 We can observe that in the Common Voice Kazakh formants plot in Figure 4.2,

the centroid for /e/ has a similar F1 value as /i/, even though we expect /e/ to be a mid vowel, not

a high one. This formant distribution of /e/ aligns with our analysis here that ‘e’ is often reduced

from /je/.

Further analysis would need to be done to see if the acoustic models (especially for /e/) are

affected by this alternation. This analysis also has implications for the G2P process. Would the

acoustic modeling and forced alignment process be improved by a narrower transcription of ‘e’? In

other words, if we added these rules in Table 4.2 to generate more fine-grained dictionaries, would

the alignment be more accurate? Would the distribution of formants be more accurate? Addressing

these questions could contribute to the wider discussion of the interface between phonetics and

phonology, as well as to the role of symbolic systems in speech technologies.

4.7 Conclusion

When a dataset lacks gold phonetic transcriptions, linguists may utilize a pipeline that takes tran-

scribed speech, passes it through an automated grapheme-to-phoneme system, a forced aligner,

and an acoustic-phonetic measurement tool (e.g., a formant tracker). To test the assumptions in

this pipeline, we conducted a systematic audit of the outliers in the output of vowel formants, and

16These extra rules that we hypothesized do not generalize perfectly to the data; our analysis would benefit from more

data points.
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developed a taxonomy of errors that may arise. The distribution of these errors sheds light on

common issues that arose in the automatic processing of each dataset and language.

Future work may consider discovering outliers via different methods, whether by using an a

priori threshold of expected formant values or by extracting features other than formants (e.g.,

MFCCs). It is also worth applying our outlier audit methodology to test the corpus phonetics

pipeline on different types of data (e.g., transcribed conversational speech), in different noise envi-

ronments, and across more languages. While we recommend always incorporating a partial manual

audit to this pipeline, automating the identification of certain outlier categories would be beneficial

as well. Being able to distinguish between valid linguistic variation and a technical error is crucial,

especially in the context of bias and fairness in language technologies. For example, given the

presence of racial bias in ASR (see Wassink et al., 2022), it is important for systems to not treat

language features of a minority group as errors. The implications of this work include a call for

careful analysis of what seem like errors in the output of automated systems.

Postlude

This chapter addressed both dissertation-wide research questions. In answering RQ1 on viable

methods for conducting corpus phonetics on diverse speech data, we developed a taxonomy of

outliers to discern how successful each part of the pipeline was. We also addressed RQ2, showing

that different types of errors and outliers revealed the inutility for corpus phonetics of datasets such

as the Kazakh partition of the Wilderness Corpus.

Reflecting on this work two years after publication, we want to emphasize the reality that

conducting this type of thorough outlier analysis is challenging and time-consuming. It is acceptable

and may be easier to simply adhere to a cut-off threshold of removing, for example, 5% of the tail

end of the distribution, and proceeding with one’s research (indeed, the VoxCommunis case study

in Section 3.5.1 removed samples greater than two standard deviations from the mean). Yet it is

important to investigate the contents of that tail end of the distribution and if they align with the

pipeline assumptions. We further discuss the theme of trusting automation in the face of diversity

in Section 7.2.1.
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CHAPTER 5

Testing Phone Granularity and Cross-language Modeling

Strategies for Low-resource Forced Alignment: A study

with Panãra field data

Overview

While the previous two chapters dealt with multilingual read speech, we now turn to a different

type of diverse speech data: fieldwork speech corpora for which there is less than an hour of

transcribed recordings. We address RQ1 in testing methods to make corpus phonetics viable for

low-resource field data. Chapter 4 showed that the grapheme-to-phoneme (G2P) step within a

forced alignment pipeline has a high impact on the quality of acoustic measures used in downstream

analysis. If the input phone sequence to MFA does not match the acoustic signal, measurements

can be skewed. One question that surfaced from that work is: what is an appropriate granularity of

phones to produce the most accurate alignment? If a phone is broader and more phonemic, it may

be more comparable cross-linguistically. This may be important for low-resource settings where

there may not be enough data to train a model from scratch; instead, a large pretrained model of

another language can be utilized in cross-language forced alignment, and broader phones make the

two language inventories more compatible. On the other hand, if phones are modeled narrower

and more allophonically, they may more accurately represent the acoustic signal and processes such

as reduction, assimilation, and allophony.

In this chapter, we manipulate the precision of the G2P output to try to achieve better alignment

(or reduce Alignment errors) in a low-resource language setting. We also explore cross-language

modeling techniques. This chapter is largely equivalent to the conference proceedings of Interspeech

titled The Use of Phone Categories and Cross-Language Modeling for Phone Alignment of Panãra (Ahn

et al., 2024).
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5.1 Abstract

Automating the time-alignment of phonetic labels in speech facilitates research in language doc-

umentation, yet such phonetic forced alignment requires pretrained acoustic models. For low-

resource languages, this raises the question as to how and on which data the acoustic model should

be trained. To align data from Panãra, an Amazonian indigenous language of Brazil, we investi-

gated three approaches for forced alignment of low-resource languages using the Montreal Forced

Aligner. First, we implemented a novel approach of manipulating the acoustic model granularity

from phone-specific to increasingly broader natural class categories in training language-specific

Panãra models. Second, we trained cross-language English models under two granularity set-

tings. Third, we compared these models to a large, pretrained Global English acoustic model.

Results showed that broadening phone categories can improve language-specific modeling, but

cross-language modeling performed the best.

5.2 Introduction

The alignment of speech to utterance, word, and phone segments is a useful and often necessary

step to studying language phenomena. Language research often faces the “transcription bottle-

neck”, where many audio recordings may exist, but there is limited transcribed data (Shi et al.,

2021). Overcoming the transcription bottleneck would also increase the amount of usable data

for Natural Language Processing (NLP) applications, such as machine translation and automatic

speech recognition, that could serve endangered language communities. Obtaining these tran-

scriptions and alignments is time-consuming to produce manually. Pretrained acoustic models are

available for many high-resource languages with large amounts of annotated speech data, yet for

lower-resource languages, acoustic models with minimal data need to be trained from scratch.

Alternatively, “cross-language forced alignment” can be implemented in which pretrained acous-

tic models of high-resource languages are used to align a lower-resource language. While cross-

language forced alignment benefits from robust amounts of training data for the acoustic model

development, it lacks language-specificity for the target language. The phoneme inventory of the
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target language in a cross-language setting generally needs to be remapped to that of the pretrained

acoustic model, as phoneme inventories are rarely one-to-one between languages. There are often

sounds in target languages of research that do not exist in high-resource languages such as English.

Another complication is that phonemic units are commonly debated for a given language, and

defining a language’s inventory is by no means trivial1 (Anderson et al., 2023). For example, the

Hausa repository in the online PHOIBLE database (Moran and McCloy, 2019) contains five entries

with the stated inventory size ranging from 31 to 46 segments (Archive, 2019; see discussion in

Section 4.6.2).

Given these concerns, we propose an alternative strategy to retain language-specificity in acous-

tic model training, which increases the amount of data per phone category by broadening phone

categories to larger natural classes. Broad class models may prove to be more universal and would

not discriminate against a target language that does not have the exact same phone set as the

training data. It also may facilitate language-specific model training by expanding the number of

instances per phone. As the task of alignment is to identify the transition point from one segment

to the next in the acoustic signal, this may still be achievable with a coarser representation of a

segment. This strategy was shown to improve cross-language, sentence-level alignment across five

European languages in acoustic model development (Hoffmann and Pfister, 2013). Alternatively,

DiCanio et al. (2013) showed that when comparing two English acoustic models’ alignments on

Yoloxóchitl Mixtec data, the model with a narrower, “context-sensitive” set of phones outperformed

the broader, more phonemic model. The narrower phones seemed to better match those of Yoloxó-

chitl Mixtec; for example, Yoloxóchitl Mixtec only had unaspirated stops, which mapped well to the

English model having separate categories for aspirated vs unaspirated stops. A major limitation of

creating narrower models is data quantity, and especially in the language-specific setting, we are

curious if broader models—that do not require as much data for training—can be beneficial. To

our knowledge, our work is the first to utilize broad phone classes in both language-specific and

cross-language modeling for phone-level alignment.
1For instance, it took Myriam Lapierre approximately 30 weeks of in-situ fieldwork in the Panãra Indigenous land,

distributed over 5 years, to determine the phonemic inventory of Panãra.
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In this work, we defined three settings of phonetic granularity and evaluated the forced align-

ment performance of Panãra, an Amazonian language of Brazil. We analyzed these settings within

both language-specific modeling of Panãra (i.e., training a model on just Panãra), and cross-

language modeling (i.e., training on English and adapting to Panãra). We address the following

chapter-specific research questions:

1. Does broadening phone categories improve alignment performance in language-specific train-

ing?

2. Does broadening phone categories improve alignment performance in cross-language training

and modeling?

3. Do any of these strategies perform better than using a large, pretrained English model in

cross-language alignment?

5.3 Data

We utilized datasets from two languages: Panãra, an endangered language that is undergoing

active documentation by Myriam Lapierre, and English, a high-resource language, which allowed

us to investigate generalizability of the methods.

Panãra (ISO-639-3: kre) is a Jê language spoken in the state of Mato Grosso, Brazil, with

approximately 700 speakers. Its phoneme inventory, displayed in Tables 5.1 and 5.2, includes

typologically less common nasality and length contrasts in both vowels and consonants (Lapierre,

2023b). Our Panãra dataset consisted of four free-speech recordings from four different speakers—

two male and two female; the utterances span 35 minutes of speech. There were a total of 771

utterances that averaged 2.76 seconds each. All data was transcribed orthographically by Myriam

Lapierre and corrected with a native speaker of Panãra.2 Phonetic boundaries from two of the four
2Though hours of recording were plenty, our available data was limited by the time-consuming process of transcribing

audio into Panãra orthography, which requires approximately two hours of work per one minute (100 words) of audio.

Orthographic transcription is a task that requires expert knowledge and the presence of both the field linguist and one

of the few fully literate speakers of Panãra.
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recordings have been manually hand-corrected by a trained phonetician.

Bilabial Alveolar Palatal Velar

Singleton obstruent p t s k
Geminate obstruent p: t: s: k:

Singleton nasal m n ñ N

Geminate nasal m: n:

Approximant w R j

Table 5.1: Consonant phonemes in Panãra, as taken from Table 1 in Lapierre (2023b, p. 187).

Short Oral Short Nasal Long Oral Long Nasal

i ĩ i: ĩ:

W W̃ W:

u ũ u:

e ẽ e: ẽ:

7 7̃ 7: 7̃:

o õ o: õ:

E E:

a a:

O O:

Table 5.2: Vowel phonemes in Panãra, as modified from Table 5 in Lapierre (2023b, p. 206).

We also selected an English dataset that could be retrained from scratch to incorporate broad

phone categories. The motivation for a broad category English model is that it would mimic a more

language-independent, multilingual model that would be inclusive of unseen sounds in the target

language. The TIMIT English dataset consists of read sentences from 630 speakers across eight

dialect regions in the US (Garofolo et al., 1993). This corpus was selected as it has been manually

transcribed at the phonetic level, as well as hand-aligned for phonetic boundaries. After removing

some problematic data,3 we utilized just under four hours of TIMIT speech from 519 speakers. This

produced 5190 utterances with an average length of 3.08 seconds.
3Two of the eight training folders did not run through the Montreal Forced Aligner, so we excluded that data.
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Figure 5.1: Our pipeline takes speech and its corresponding text transcriptions as input. We pro-
duce a phone sequence with a grapheme-to-phoneme (G2P) system. We then manipulate the lexi-
con for each model to allow for broadening phone categories and conducting cross-language align-
ment. We train acoustic models and produce phone-level alignments, which we then evaluate
against human-annotated “gold” alignments.

5.4 Methodology

Our pipeline included the following steps, described in detail below: (i) grapheme-to-phoneme

conversion, (ii) lexicon creation, (iii) data management, (iv) acoustic model development and

forced alignment, and (v) evaluation of aligned boundaries. As highlighted in Figure 5.1, the

lexicon and acoustic modeling are the main components we manipulated for our experiments.4

5.4.1 Grapheme-to-phoneme conversion

First, the Panãra data went through an automatic rule-based grapheme-to-phoneme (G2P) system

to convert orthography into phones.5 There were instances of code-switched Portuguese words in

the Panãra speech, for which we applied the Epitran G2P in Portuguese (Mortensen et al., 2018).

There were only 34 Portuguese words in the entire dataset, and these had been tagged with the

language specification directly in the transcription. None of the G2P output was hand-corrected.
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Map from Map to
Panãra-Explicit No-Diacritics Broad (SCA) TIMIT-Explicit Global English

Panãra Phone Types 63 29 17 25 30
Vowels a a A a a

a: a A a a:

ã a A a a
e e E eI e
e: e E eI e:

ẽ e E eI e
ẽ: e E eI e:

i i I i i
i: i I i i:

ĩ i I i i
ĩ: i I i i:

o o U oU o
o: o U oU o:

õ o U oU o
õ: o U oU o:

u u Y u u
u: u Y u u:

ũ u Y u u
ũ: u Y u u:

O O U O O

O: O U O O

E E E E E

E: E E E E:

7 7 E @ o
7: 7 E @ o:

7̃ 7 E @ o
7̃: 7 E @ o:

W W I I u
W: W I I u:

W̃ W I I u
Flaps R R R R R

Approximants j j J j j
w w W w w

Fricatives h h H h h
s s S s s
s: s S s s

Nasals m m M m m
m: m M m m
n n N n n
n: n N n n
N N N N N

ñ ñ N n n
Stops k k K k k

k: k K k k
p p P p p
p: p P p p
t t T t t
t: t T t t

Portuguese ĩ i I i i
ũ u U u u
5 5 E a 5

5̃ 5 E a 5

Ẽ E E E E

b b P b b
d d T d d
g* g* K g g*
w̃ w W w w
S S S S S

Other c c C k k
g g K g g*
j: j J j j
l l L l l
Õ O U O O

Table 5.3: (Caption next page.)
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Table 5.3: (Previous page.) The lexicon mapping from the explicit Panãra setting to each of the
other language-specific and cross-language settings. The number of phone types is the number of
distinct phone categories in that model that corresponds to Panãra phones. (For counts of the total
phone types in each of the trained models, see Table 5.5 in the Results section.) The Broad category
symbols correspond to the classes in List (2012)–for the full list, see Figure 5.2; all other symbols
are in IPA. The Other section at the bottom of the table is output from the Panãra grapheme-to-
phoneme (G2P) conversion that is not in the phone inventory. It may have been a named entity
where the characters from the word transcription were not recognized as valid Panãra orthography.
To note, [c] came from the name “Claudio” uttered several times, which for the mapping to explicit
English models, we chose the more acoustically accurate [k] sound. The g* refers to the Latin small
letter script g. It is a subtly different character than g. The geminate consonant [j:] does not exist
in the Panãra inventory, but was created as an artifact of the post-processing of the grapheme-to-
phoneme conversion; it appears only once in all the Panãra data.

5.4.2 Lexicon creation

Second, we created three settings of phone categories in the lexicon creation stage that informed

the language-specific training for Panãra-only acoustic models: “Explicit”, “No Diacritics”, and

“Broad natural class”. The first setting, “Explicit”, used the given phone categories, which con-

sisted of 63 phonetic labels from the default output of the G2P system. The second setting, “No

Diacritics”, had 29 phonetic labels where all length and nasalization markers were ignored. Lastly,

we created a “Broad” phone categories setting, which followed the natural classes from the Sound-

Class-Based Phonetic Alignment (SCA) tool (List, 2012). Each of our phones was mapped to one of

the 28 SCA classes that included six vowels, five fricatives, three plosives, one affricate, two nasals,

one laryngeal, two approximants, one trill/tap/flap, and seven tones (see Figure 5.2). The Panãra

phone set had 17 of these sound classes.

For our second chapter-specific research question, we trained the TIMIT English acoustic models

under two phonetic granularity settings. The “Explicit” setting had 46 fine-grained phonetic labels.6

The “Broad” setting also used the SCA classes (List, 2012), which included 19 of these sound classes.

For our third chapter-specific research question, we conducted a final comparison of a large pre-

trained English model’s alignment on Panãra data to address whether large cross-language acoustic
4All code is publicly available at https://github.com/emilyahn/force_align.
5This G2P system is an internal tool created by collaborator Teela Huff.
6While TIMIT originally had 61 phone labels, they are not typically all used (Fernández et al., 2008). We collapsed

several categories such as “b-closure” with [b], and [2] with [@].
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Figure 5.2: The 28 sound classes from the SCA sound class model, as taken from Table 4 in List
(2012). We used these classes as the “Broad natural class” settings for training our Panãra and
TIMIT English models.

models may still outperform the smaller acoustic models. The Global English model (McAuliffe and

Sonderegger, 2023) was the largest pretrained acoustic model available from MFA, consisting of

3,770 hours of speech from regions including the US, UK, Nigeria, and India. As this model would

have been difficult to retrain from scratch, we did not apply our broad phonetic categories method-

ology.

To align Panãra data with the Explicit versions of these English models, we also created lexicons

that mapped explicit Panãra phones to the respective English phone sets. Table 5.3 displays the

Panãra phone set and its mappings to the different settings and cross-language phone inventories,

while Table 5.4 displays an example Panãra utterance and the phone sequences it corresponded

to using each trained model’s lexicon. The main differences between the explicit English phone

inventories and Panãra were the following: the Global English model did not have nasalized vowels

or lengthened consonants, the TIMIT Explicit model did not contain any nasalized or lengthened

sounds, and neither of these had the unrounded back vowels [W] and [7].
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Panãra Orthography Haa mämä jynkjân rasu hapôô
Panãra Explicit h a: m 7̃ m 7̃ j W N k j 7 n R a s u h a p o:

Panãra No Diacritics h a m 7 m 7 j W N k j 7 n R a s u h a p o
Broad (SCA) H A M E M E J I N K J E N R A S Y H A P U
TIMIT English h a m @ m @ j I N k j @ n R a s u h a p oU

Global English h a: m o m o j u N k j o n R a s u h a p o:

Translation “Well, this time you arrived (where I am)”

Table 5.4: An example utterance in Panãra including the original orthography, the phone sequence
mapping per lexicon and acoustic model, and the English translation.

5.4.3 Data management

For a fair comparison, the Panãra dataset was split into three speakers for training and one speaker

for testing. Since we have manually-annotated “gold” alignments for two speakers (one male and

one female), we implemented two train/test configurations that each held out one of these two

speakers for testing. This cross-validation scheme allowed us to not contaminate the test set with

a speaker from the train set, yet utilize all of our manually-annotated data. This resulted in the

Panãra train set totaling either 27 or 31 minutes of speech, and the aggregated test set including 12

minutes of speech. For TIMIT, we created two versions of the train set; the “full” version had 224

minutes and 495 speakers, and the “small” version had 26 minutes and 51 speakers. This “small”

TIMIT train set was devised to have a comparable duration to the Panãra train set. The resulting

acoustic models were then used to align the Panãra test set.

5.4.4 Acoustic model development and forced alignment

After preparing speech audio files, their corresponding phone sequences, and the lexicons, we

passed these through the Montreal Forced Aligner (MFA) Version 2.2.17, a tool easily configurable

to train and adapt acoustic models from scratch (McAuliffe et al., 2017). For our experiments,

we applied the three different granularity settings to a Panãra-only train and test scenario, and

then applied two granularity settings to train the TIMIT English models. All English models were

adapted using the Panãra train set, which slightly modified the acoustic model parameters. We

used the default MFA settings for all model training and adaptation, which employed a triphone

GMM-HMM architecture with MFCCs.
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Trained
Dataset

Trained Settings
(# Phone Categories)

Precision
(%) ↑

Panãra
Explicit (63) 60.20
No Diacritics (29) 62.35
Broad (17) 61.92

TIMIT English

Explicit Full (46) 62.65
Explicit Small (46) 66.09
Broad Full (19) 56.07
Broad Small (19) 61.14

Global English Explicit (100) 69.82

Table 5.5: Alignment performance across various systems on the Panãra test set, as measured by
phone boundary onset displacement within 20 ms. English-trained models have been adapted to
the Panãra train set.

5.4.5 Alignment evaluation

Our methods for measuring alignment performance used phone onset boundary differences be-

tween system and manually-annotated “gold” versions. We define boundary “precision” as the per-

centage of system onsets that are within 20 milliseconds of the corresponding gold onsets (higher

is better) (MacKenzie and Turton, 2020; McAuliffe et al., 2017).7

5.5 Results

For our first chapter-specific research question related to the influence of broadening phone cate-

gories on alignment performance in language-specific training, we examine the top three rows in

Table 5.5. These show that for language-specific training, i.e., the Panãra-trained models, broad-

ening the phone categories beyond the Explicit setting was beneficial. Between removing diacritics

and using the broad SCA natural classes, the No Diacritics model performed the highest at a preci-

sion of 62.35% for the onset boundary to be within 20 milliseconds of the gold boundary. The Broad

SCA Panãra model performed slightly worse at 61.92%, suggesting that broadening the categories

too much lost specificity for the acoustic model phone categories. The Explicit Panãra model had
7We use the term “precision” in this chapter instead of the term “accuracy”, which was used in the proceedings paper

(Ahn et al., 2024). This allows for consistent terminology with Chapter 6.

70



63 phone categories, which was likely too many for its training data size, given that its performance

on the test set was only 60.2%.

As for our second chapter-specific research question related to cross-language acoustic model

training and alignment, we examine the middle four rows in Table 5.5. For the TIMIT English-

trained models that were adapted on Panãra, using broad phone classes degraded performance;

Broad SCA models for each data size (Full and Small) performed worse than their respective Ex-

plicit models. Even though the broad TIMIT models were aimed at mimicking language-agnostic,

multilingual models, this did not help in alignment of Panãra data. The best TIMIT model was the

Explicit Small, which yielded a 66.09% precision.

As for our third chapter-specific research question, if any of these strategies above can outper-

form a large, pretrained model, our answer is no. The Global English model performed the highest

across all models. Even with 100 phone categories in its acoustic model, the 30 categories (see

Table 5.3) that pertained to the Panãra phone set were language-specific enough to outperform any

of the other models.

Beyond these primary questions, we also sought to understand the performance patterns within

specific natural sound classes across the different configurations. Figure 5.3 reveals several findings.

Among vowels, short vowels were more precise than long vowels, and oral vowels were more

precise than nasal vowels. Within Panãra-only systems, the No Diacritics model performed better

than the Broad model for long and nasal vowels, implying that combining the vowels into fewer

natural class categories lost specificity in the acoustic model training. Some other notable phone-

specific patterns involved [h], which performed particularly poorly among fricatives and overall,

as well as the tap [R] which performed especially poorly for all Panãra models. The best TIMIT

English model outperformed all the other Panãra models except for among long vowels, with which

it performed similarly. The Global English model was on par with or outperformed all the other

models for each natural class except approximants.

71



O
ns

et
 P

re
ci

si
on

 %

0

25

50

75

100

Long 
Vowels
(191)

Short 
Vowels
(2101)

Nasal 
Vowels
(699)

Oral 
Vowels
(1612)

Fricatives
(356)

Taps
(454)

Panãra Explicit Panãra No Diacritics Panãra Broad
TIMIT Explicit Small Global English

Figure 5.3: Onset boundary precision within 20 ms (y-axis) across a selection of natural classes
presented with their token counts (x-axis), on Panãra test data. The colored bars represent five of
the systems.

5.6 Discussion

5.6.1 Training strategies

The above results demonstrated that broadening phone categories can be beneficial on limited data,

though cross-language forced alignment using the large Global English model had consistently high

performance. Considering cross-language configurations, the Global English model outperformed

all others, likely due to its nearly 4,000 hours of regionally diverse training data. In addition, the

Explicit Small TIMIT model performed better than all remaining cross-language and all language-

specific configurations. One potential explanation for this is that the training data for the Explicit

Small model was more balanced in its regions of speakers. The higher performance of the Explicit

models supports the findings of prior work on Yoloxóchitl Mixtec (DiCanio et al., 2013). Overall, we

recommend that language researchers adapt the Global English model, or a similar large pretrained
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model, to align their own target dataset.

5.6.2 Natural class analysis

One interesting finding was that long and nasal vowels showed a higher degree of inaccuracy in

boundary placement, even for the best-performing Global English model. From a typological angle,

long vowels are less common in the world’s languages than short vowels, as are nasal vowels

compared to oral vowels (Gordon, 2016). The counts of each vowel type in our Panãra data also

reflected this imbalance. Despite the diversity of speakers and dialects for the Global English model,

typological trends suggest that there were likely fewer instances of vowels being lengthened (which

were in the inventory) or nasalized.

In addition, the phonological grammar of Panãra provides some insights into our findings, re-

vealing how language-specific phonological processes make the task of alignment especially chal-

lenging. Across all systems, it was more difficult to place the onset boundary for fricatives, nasals,

and stops. Fricatives are often distinct in their acoustic and spectral features, yet had low accuracy

in our models. As discussed in Lapierre (2023a), the glottal fricative [h] can be variably inserted

in onsetless syllables, especially those that are prosodically prominent, such as in word-initial or

stressed syllables. Under qualitative review of the data, we observed that word-initial [h], which

was consistently present in the transcription, was pronounced at times and silent at others. Be-

cause the MFA must assign every phone in the given phone sequence a non-zero duration, deleted

or invisible segments can throw off the performance.

Finally, the poor performance of our models on taps may be explained by the fact that our

G2P system did not encode a relevant phonological rule. In particular, Lapierre (2023b) described

a process of excrescent vowels in complex onsets, such as in the word /kR7/ → [k7R7] ‘thigh’.

As a result, the MFA forced an alignment of /kR7/ to an acoustic signal of the form [kVR7], thus

encountering an additional, unexpected vowel.
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5.7 Conclusion

This chapter investigated the question: how does broadening phone categories of acoustic models

affect the temporal degree of accuracy of phone-level forced alignment? We defined three gran-

ularity settings of phone categories as input to our acoustic models trained on either Panãra or

English, and found mixed results on a Panãra test set: broadening phone categories can be help-

ful in language-specific training on very limited data, but cross-language alignment with a large

Global English model outperformed other configurations. Can our findings for Panãra and English

be replicated across other languages?

A main limitation of this work is that because the number of speakers in all of our Panãra data

was only four, idiosyncrasies and sociolinguistic factors could have strongly affected our results.

The two speakers in the Panãra train set were younger than those in the test set, and age is corre-

lated with higher proficiency in discourse skills such as rhythm and intonation. Also, while most

Panãra speakers are monolingual, young males are the only group with conversational proficiency

in Portuguese as a second language (Lapierre, 2023b). Although we balanced speaker gender in

our data splits, speaker idiosyncrasies could have prevailed. Additionally, the Portuguese and mis-

cellaneous phones present in our Panãra data may have added noise to these results.

One direction for future work is to further investigate the granularity settings of the lexicon.

Distinctive features are binary properties in phonology that describe place and manner of articu-

lation, as well as voicing and other properties (Jakobson et al., 1951). As the SCA groupings of

natural classes from List (2012) may not optimally reflect the similarity of sounds in the acous-

tic representation space, using distinctive features or an unsupervised clustering method to group

sounds could aid in identifying more optimal groupings for broader sound classes. A multilingual

aligner such as one developed by Zhu et al. (2024), trained on data with diverse phone inventories,

could also be compared to these strategies.

Postlude

This chapter operationalized the viability of methods from RQ1 into testing two acoustic modeling

strategies: cross-language modeling and expanding phone granularity. In the face of limited data
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from a fieldwork setting, creative strategies are important for being able to use automated systems

to conduct phonetics research.

Continuing the discussion on sound unit representations, we reflect on the impact of similar-

ities and differences between language inventories in cross-language acoustic modeling. In this

chapter, we stated that American English does not have lengthened or nasalized contrasts in its

phonemic inventory. However, these sounds do exist in the acoustics of American English speech as

allophones. As such, Panãra may not be acoustically too dissimilar to English, and the performance

of the Global English model could be attributed to a relative overlap between the two languages’

sound inventories. It would be interesting in future work to use a pretrained English model to

model the acoustics of a language that contains sounds that do not appear at all in English, al-

lophonically or not. In ongoing work, we are collaborating with phoneticians on measuring the

acoustics of non-pulmonic sounds such as ejectives and implosives. As these types of sounds rarely

occur in English and many other high-resource languages, the methodologies used in this chapter

may not be relevant in the acoustic modeling of these sounds. Further discussion on the theme of

sound unit representation can be found in Section 7.2.2.
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CHAPTER 6

Acoustic Modeling Strategies for Low-resource Forced

Alignment of Code-switched Speech: A study with

Urum–Russian field data

Overview

This chapter expands the scope of data diversity for which we aim to study corpus phonetics.1

The presence of Panãra–Portuguese code-switching in the previous chapter, along with the code-

switching found in two other field datasets (see Chodroff et al., 2024a), inspired our work in this

chapter where we continue to test acoustic modeling and forced alignment strategies for field data

that is highly code-switched.

We have discussed methods for using automation in the corpus phonetics pipeline for large,

multilingual speech corpora. We also have delved into the realm of field data that is low-resource.

Yet one aspect of field data is that there may be more than one language present in the recordings.

Another language of broader communication may be used to elicit the target language, or speakers

of the target language may switch back-and-forth between the target language and other languages.

This chapter investigates ways to conduct corpus phonetics when the input data is multilingual and

highly code-switched. How does this affect how we model the acoustics of this language? What

are the implications for the quality of phonetic analyses on downstream output? We answer both

broad dissertation-wide research questions (RQs) in this chapter’s specific research questions.

6.1 Abstract

Code-switching, using multiple languages in a single utterance, is a common means of commu-

nication. In the language documentation process, speakers may code-switch between the target
1This work has been submitted to the Field Matters workshop of the Association for Computational Linguistics con-

ference, 2025, with co-authors Eleanor Chodroff and Gina-Anne Levow.

76



language and a language of broader communication; however, how to handle this mixed speech

data is not always clearly addressed for speech research and specifically for a corpus phonetics

pipeline. This chapter investigates best practices for conducting phone-level forced alignment of

code-switched field data using the Urum speech dataset from DoReCo. This dataset comprises 117

minutes of narrative utterances, of which 42% contain code-switched Urum–Russian speech. We

demonstrate that the inclusion of Russian speech and Russian pretrained acoustic models can aid

the alignment of Urum phones. Beyond using boundary alignment precision and accuracy metrics,

we also discovered that the method of acoustic modeling impacted a downstream corpus phonetics

investigation of code-switched Urum–Russian.

6.2 Introduction

In the language documentation and analysis pipeline, the fact that the target language is often

mixed with another language of broader communication, even within a single utterance, is often

overlooked or explicitly ignored. Code-switching is a method for multilingual speakers to commu-

nicate in more than one language, where the mixing of languages within a single utterance can be

referred to as code-mixing.2 If the goal of the fieldwork is to document the language of interest,

field linguists and language communities may wish to ignore the language of broader communica-

tion. On the other hand, it may be useful to include the mixture of languages in the analyzed data

for methodological or scientific purposes, for a variety of reasons. This could be that the added

data improves methodological precision, or it could be that this mixing more properly reflects how

that target language is actually used by the speakers.

Regardless of the analytical use, inclusion of the code-switched language data may benefit

processes within the corpus phonetics pipeline. Phonetic forced alignment is a critical part of

this pipeline. Generally, when there is more data available to train the acoustic models, the models

can perform better alignment. In the case of code-switched speech, there is a question, however,

of whether to use only the target language data for training the acoustic models, or to use all of
2For this chapter, we use code-mixing and code-switching interchangeably, though recognize that the current research

focus is on code-mixing.
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the linguistic data for training the acoustic models. If we include code-switched speech instead of

ignoring it during training, there would be more data per speaker, which could help build more

robust phone-specific acoustic models (as speculated in Chodroff et al., 2024a).

Two prior studies incorporated a language of broader communication when training forced

alignment systems on field data, though the effects of this mixed language speech were not ex-

plicitly studied. In Chapter 5, we included Portuguese content when developing acoustic models

for Panãra, an Amazonian language of Brazil. Chodroff et al. (2024a) retained the Russian speech

content in the acoustic modeling of Evenki, a Tungusic language, and Urum, a Turkic language,

which is also used in this work (Kazakevich and Klyachko, 2022; Skopeteas et al., 2022).

More relevant to the present study is work by Pandey et al. (2020) who compared methods

of training and aligning code-switched Hindi-English speech. Three acoustic models were trained

with the Montreal Forced Aligner: Hindi-only, English-only, and Hindi–English mixed, and they

discovered that the combined model best aligned English-only speech. It was unclear, however, if

the high performance from the Hindi–English mixed acoustic models was due to that model having

more tokens in its training data than the other models. Our work extends these findings to a low-

resource, field data scenario, and we carefully controlled the variable of training data quantity. We

investigated whether including code-switched data could improve the alignment performance of a

target low-resource language.

We ask the following research questions:

1. Does the inclusion of Russian code-switched data in acoustic model training help the align-

ment of target Urum data?

2. Does the method of acoustic modeling impact a downstream corpus phonetics investigation

of code-switched Urum–Russian?

In this chapter, we introduce the Urum language (Section 6.3), then discuss the methodology of

data preparation, acoustic modeling and forced alignment, evaluation and analysis (Section 6.4).

We used the Montreal Forced Aligner (McAuliffe et al., 2017) to train acoustic models from scratch

as well as adapt pretrained Russian and English models to our data. With respect to the first

chapter-specific research question, we found that the inclusion of code-switched speech and Russian
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pretrained models aided alignments of Urum (Section 6.5). To answer the second chapter-specific

research question, we tested the impact of acoustic modeling strategies in a bilingual phonetics in-

vestigation (Section 6.6): Are vowels in Urum words pronounced differently in monolingual Urum

utterances than in code-switched utterances? After discussion, we conclude with methodological

recommendations and areas for future work (Section 6.7). All code for replicating this work is

publicly available.3

6.3 Urum language and dataset

Urum (ISO: uum) is a Turkic language spoken by ethnic Greeks in the Small Caucasus of Georgia

and in Ukraine. Also known as Caucasian Urum, it is a variety of Anatolian Turkish that is classified

as endangered (Campbell et al., 2022). For the variety documented by Skopeteas et al. (2022)

and analyzed in this chapter, the language has been strongly influenced by Russian since the group

arrived in Georgia in the early 19th century. Notably, most Urum speakers are bilingual in Russian

and often code-switch between the two languages (Skopeteas, 2014). Unlike the examples of code-

switching being used in purely meta-linguistic commentary (see Section 2.1.3), Russian portions of

speech in this dataset were part of the narrative content by the speakers. The following shows an

example of an Urum–Russian utterance with transliterated Russian displayed in brackets:

äp halhmz egler kissäya [muzka] ederh [malade] [tantsuet] oinamah etmäh

“All the people get together at the church, we organise [music], and the [youth] is [danc-

ing].” (Skopeteas et al., 2022)

We utilized the Urum dataset from the DoReCo corpus, which is a field data repository that con-

tains manual word-level and automatic phone-level alignments of speech (Paschen et al., 2020).

Traditional and personal Urum narratives were recorded across 30 speakers (16 female, 14 male)

and spanned 117 minutes4 of speech (Skopeteas et al., 2022). Figure 6.1 visualizes the distribu-

tion of Urum-only, Russian-only, and code-switched utterances among speakers. All but one speaker
3All code is publicly available at https://github.com/emilyahn/align_cs.
4Time was calculated by summing utterance durations, not file or word durations.
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Figure 6.1: Across the 30 speakers in the DoReCo Urum field repository (Skopeteas et al., 2022),
almost all produced code-switched utterances (orange, middle) in addition to monolingual Urum
(blue, left) and monolingual Russian utterances (green, right).

code-switched. Table 6.1 reveals that while 42% of the utterances were code-switched, they repre-

sented 53% of the repository in minutes.5 Code-switched utterances averaged 6.5 seconds, which

was on average longer than non-codeswitched utterances (Urum-only: 4.5 seconds; Russian-only:

2 seconds). Among the code-switched utterances, Urum word tokens were more frequent than

Russian word tokens, as seen in Figure 6.2.
5If all utterances with “foreign material” were excluded, as was the protocol in Zhu et al. (2024) over the full DoReCo

dataset, we would miss out on half the data.
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Utt Count Time (min) Avg (sec)

All 1373 117.6 5.1
Urum 752 (55%) 53.5 (45%) 4.3
CS 581 (42%) 62.9 (53%) 6.5
Russ 40 (3%) 1.3 (1%) 2.0

Table 6.1: Distribution of utterances across language usage, by count and time. Notably, code-
switched (CS) utterances had longer durations.

6.4 Methodology

6.4.1 Data preparation

Data from the field repository needed to be prepared as input to the acoustic models. The audio

files were in WAV format, recorded with a sampling rate of 44.1 kHz, and transcriptions were

provided in ELAN. We used Praat (Boersma and Weenink, 2019) to segment the audio files into

utterances. Four utterances were filtered out due to encoding issues.

Urum phone sequences were derived automatically by the repository contributors, so our lexi-

cons (two-column text files with words and their corresponding phone sequences) were gathered

from these existing phone sequences. Most of the Russian words had been transliterated into Latin

script at the word-level, so we used a simple mapping script to build the lexicon (see Table 6.2).

The Urum phone set from DoReCo included nine vowels and 30 consonants while the transliterated

Russian phone set included six vowels and 24 consonants. Only four Russian phones did not exist

in the Urum set, as seen in Table 6.3, and we used the PanPhon tool (Mortensen et al., 2016) to

map them to their nearest neighboring Urum phones in the lexicons: 1 → W, tC → tS, ù → S, ü →

Z. The repository contributors used tags to transcribe content such as filled pauses, prolongations,

and false starts.6 When a tagged word was partially transcribed (such as in this example of a false

start, “<fs>ba”), we manually assigned it a phone sequence (in this case, “[b a]”) and classified it

as an Urum word.7

6The full list of possible tags is the following: filled pause, false start, prolongation, foreign material, singing,

backchannel, ideophone, onomatopoeic, word-internal pause, unidentifiable, and silent pause.
7Anecdotally, there were several instances where the partially-tagged word was Russian. For the sake of simplicity,

we labeled all tagged content as Urum.
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Orthography IPA

a a
b b
d d
e e
f f
g g

h x
i i
j ü

k k
l ì

m m
n n
o o
p p
r r
s s
t t
u u
v v
y j
z z
č tC

ı 1

š ù

ž ü

’ j

Table 6.2: We mapped the Russian orthography, which was transcribed in Latin script by the
DoReCo repository contributors, to Russian IPA phones.
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Urum

Russian

Figure 6.2: Proportion of Urum (blue, shaded) to Russian (white) word tokens in all 581 code-
switched utterances, sorted highest to lowest. The majority of these utterances had more Urum
than Russian tokens.

6.4.2 Acoustic modeling

We used the Montreal Forced Aligner (MFA version 2.2.17; McAuliffe et al., 2017) to train acoustic

models and conduct forced alignment on our data in its default unsupervised manner. We split

the DoReCo files into train and test partitions following the same split as Chodroff et al. (2024a):

1,097 utterances (100 minutes) in the train set and 273 utterances (16 minutes) in the test set.

For this study, we created further subsets of the training data to answer our first chapter-specific

research question. First, we summed the minutes of utterances of each language type and found 47

minutes of monolingual Urum utterances and 52 minutes of code-switched utterances. To keep the

quantity of Urum-only and code-switched training data the same, we reduced the number of code-

switched utterances to sum to 47 minutes, which would equal the amount of Urum-only speech.

Our first results compared the alignment performance of a model trained on 47 minutes of purely
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Urum-only Urum & Russian Russian-only

y, æ, œ, W a, e, i, o, u 1

é, c, d:, t: b, p, d, t, g, k
s:, S, Z, G, dZ, tS v, f, z, s, x tC, ù, ü

l, l:, R, m: j, r, ì, m, n

Table 6.3: The phone sets present in the DoReCo transcriptions across Urum and Russian, with the
middle column being their overlap.

Urum speech to a model trained on 47 minutes of Urum–Russian speech.8 Our third training data

partition combined both sets to include 94 minutes of Urum-only and code-switched speech. All

Russian-only utterances were excluded from training and evaluation.

Since we showed in Chapter 5 that it was advantageous to use larger, pretrained models for

aligning low-resource languages, we chose two relevant MFA models to continue the experiments.

The Russian MFA v3.1.0 model was trained on over 400 hours of data from over 3,000 speakers;

this model was selected since Russian was frequently spoken in our dataset (McAuliffe and Son-

deregger, 2024). The Global English MFA v2.2.1 model was trained on over 3,700 hours of data

from over 79,000 speakers across the world (McAuliffe and Sonderegger, 2023). This model has

previously proven to be effective in aligning the Urum dataset in Chodroff et al. (2024a). For

cross-language modeling and alignment, we developed the lexicons by applying the PanPhon tool

(Mortensen et al., 2016) for determining the nearest neighboring phones in cases where the tar-

get phone did not exist in the model. Table 6.4 displays these phone mappings. Each pretrained

model was adapted to the same three training data partitions as described in the train-from-scratch

settings above.

6.4.3 Forced alignment evaluation

Following Chodroff et al. (2024a), we evaluated the quality of the forced alignments using two

metrics, precision and accuracy, to compare our system output to the hand-corrected, “gold” phone-

alignments from the same study. For precision, we calculated the percent for which the model
8While the minutes across the two partitions were the same, the number of utterances was 618 for Urum and 414 for

code-switched speech. However, the number of phones in each partition was roughly 27,000.
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Russ (CS) to Eng MFA Urum to Eng MFA Urum to Russ MFA

tC → tS d: → d R → r
1 → W l: → l œ→ E

ù → S m: → m W → 1

ü → Z r → R S → ù

s: → s Z → ü

t: → t d → d”

x → ç d: → d”:

y → 0 dZ → dü:

œ→ E l → ì

G → ç l: → ì:

W → @ n → n”

s → s”

s: → s”:

t → t”

t: → t”:

tS → tù

y → 0

z → z”

Table 6.4: Urum and Russian (code-switched) phones from DoReCo that did not exist in the pre-
trained English or Russian MFA model lexicons were mapped to their nearest neighboring phones,
calculated with the PanPhon tool (Mortensen et al., 2016).

onset boundary was within 20 ms (the selected threshold) of the manually aligned onset boundary

(MacKenzie and Turton, 2020; McAuliffe et al., 2017). For accuracy, we utilized a measure that

calculated the proportion of model-aligned intervals whose midpoints lay within the respective

gold intervals (Knowles et al., 2018; Mahr et al., 2021). All evaluation was conducted on the test

partition which consisted of 132 Urum utterances and 119 code-switched utterances. Phones from

only Urum words were evaluated, ignoring all phones from Russian words.

6.4.4 Analysis

We conducted mixed-effects regressions in R (R Core Team, 2022) using the lme4 package to an-

alyze the variables that contributed to both the precision and the accuracy variables (Kuznetsova

et al., 2017). Main effects were the language of the test utterance (Urum or CS), the natural class

of the current phone, the natural class of the previous phone, the interaction of these two natural
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classes, the proportion of contaminated (tagged) tokens,9 the utterance duration, the interactions

of model configuration with utterance language, and whether or not the speaker of the test utter-

ance was present in the training set. Random effects were the speaker ID and the file ID of the

utterances. The current phone class was sum-coded with the held-out level of stop; the previous

phone class was sum-coded with the held-out level of silence. The eight classes analyzed were

vowels, approximants, taps/trills, nasals, fricatives, affricates, and stops. Models were treatment-

coded, each compared to the 47min train-from-scratch Urum-only model. We ran two models: the

first was a linear model with the dependent variable as log seconds of onset boundary differences,

with 0 sec mapped to 0.001 prior to the log transformation. The second model was a logistic

regression with the binary dependent variable being accuracy.

6.5 Results

6.5.1 Alignment precision and accuracy

The following results answer our first chapter-specific research question: Does including Russian

code-switched data in acoustic model training help the alignment of target Urum data? The differ-

ent acoustic model configurations were trained or adapted on subsets of the DoReCo dataset, and

they were all tested on the held-out test utterances that included both Urum-only and CS utter-

ances. In the scenario where we trained MFA models from scratch (i.e., no pretrained model was

used – note the None column in Table 6.5), we have two findings. When we kept the training data

quantity equal at 47 minutes for both Urum-only speech and code-switched speech, the Urum-only

model outperformed the purely code-switched one. However, combining these two training sets

in the Urum + CS (94m) model substantially improved upon either 47 minute model. Since we

only evaluated on phones from Urum words, it was expected that the Urum (47m) model would

outperform the CS (47m) model as it was more matched in language setting. It also made sense
9Contamination in an utterance was calculated as the number of tagged tokens, such as false starts or prolongations,

divided by total number of tokens.
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that the combined training set yielded a higher performance, since it included more Urum speech

overall.

Train/Adapt Pretrained model
Partition None Eng Russ

Precision % ↑
Urum (47m) 63.2 70.4 71.2
CS (47m) 58.2 70.0 70.4
Urum + CS (94m) 70.9 70.6 71.3

Accuracy % ↑
Urum (47m) 80.6 83.7 84.9
CS (47m) 77.2 83.1 84.4
Urum + CS (94m) 85.1 83.6 85.1

Table 6.5: Results revealed that the Russian MFA model adapted on all 94 minutes of Urum and
code-switched (CS) data performed the best, with maximal training-from-scratch (i.e., Urum + CS
(94m)) on par in terms of accuracy. Precision is how often the system phone boundary was within
20ms of the gold boundary. Accuracy is how often a system phone midpoint lay within the gold
interval. Highest scores are bolded and shaded.

For the experiments using pretrained models adapted on the various Urum/CS partitions, the

Russian MFA model adapted on Urum + CS (94m) produced the best results. Even though the

Global English MFA model was trained on nearly 4,000 hours of diverse speech, its alignments did

not outperform the smaller Russian MFA model. This is perhaps due to the language similarity of

Russian to Urum, or the history of Urum being influenced by Russian contact. All models trained

or adapted on the different DoReCo subsets patterned the same where the ranking of best to worst

subset was Urum + CS (94m) > Urum (47m) > CS (47m), with the slight exception of accuracy

from the Global English MFA with Urum (47m) > Urum + CS (94m).

6.5.2 Regression analysis

The mixed-effects regression analysis revealed several factors that influenced alignment perfor-

mance. We report all significant findings of p < 0.05. Except for the train-from-scratch CS (47m)

model which performed significantly worse, all other models performed significantly better than

the Urum (47m) model. Longer utterance durations and higher contamination amounts were cor-

related with worse performance. The speaker appearing in the training data had no significant
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VOWELS
Spkr a e i o u y œ æ W

Male
A01
A03 n=189 n=57

Female

A02
A07 n=13
B08
B11
B16 n=20

Table 6.6: Our case study revealed that from the gold data, /a/ for 3 speakers and /o/ for 1
speaker (marked with shaded cells and token counts) in Urum words were pronounced significantly
differently in monolingual Urum vs code-switched utterances. For these four instances, Pillai scores
indicated that the vowel formants for the two groups in question (Urum vs CS) were significantly
non-overlapping.

effect. The language of the test utterance also had no effect, with a slight exception of the CS

(47m) model performing slightly worse on Urum-only test utterances.

In terms of precision, boundaries around taps/trills were displaced more significantly, while

boundaries around fricatives showed higher precision. Boundaries preceding vowels also per-

formed better. Significantly better precision was found for vowel–tap/trill, fricative–vowel, affricate–

vowel, affricate–nasal, stop–vowel, and stop–tap/trill sequences. Significantly worse precision was

found for vowel–vowel, vowel–approximant, tap/trill–vowel, nasal–nasal, and fricative–approximant

sequences.

As for accuracy, which used a logistic mixed-effects regression model, significantly better per-

formance was found for phone intervals preceded by nasals, fricatives, affricates, and stops, as well

as for targeted phone intervals that were fricatives and affricates. Significantly worse accuracy was

found for phone intervals preceded by vowels, approximants, and taps/trills, as well as targeted

phone intervals of these three classes. These results are largely comparable to the mixed-effects

regression results from Chodroff et al. (2024a).
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6.6 Case study

Following Babinski et al. (2019), we asked a general phonetics question and observed whether

there were significant differences between the outputs of the different model configurations above.

In other words, to what degree are we comfortable substituting an automatic alignment for manual

alignment in answering a question about code-switching phonetics? We investigated the following:

Are vowels in Urum words pronounced differently in monolingual Urum utterances compared to in

CS utterances? First, we answered this with the manually-annotated “gold” test data.

6.6.1 Methodology

The Pillai-Bartlett trace, or Pillai score, is a useful metric to measure overlap in vowel category

qualities. It takes output from a MANOVA test, which is used for measuring overlap between two

distributions across two dependent variables–in our case, the first two formant values. Among four

commonly used metrics for vowel overlap, Kelley and Tucker (2020) showed that Pillai scores are

among the most reliable. Stanley and Sneller (2023) additionally provided a formula to derive

a threshold for determining overlap vs separation, based on the exact sample size of the tokens.

We followed these recommendations and calculated Pillai scores for formant values extracted from

the gold test set. Formants were first extracted with the Linear Predictive Coding (LPC) tool in

Praat (Boersma and Weenink, 2022), searching for 5 formants under 5,000 Hz for reported male

speakers and 5,500 Hz for reported female speakers. The formant value analyzed per vowel was

an average of values taken at three timestamps: the interval midpoint and 10 milliseconds before

and after the midpoint.

6.6.2 Results from manual alignments

The gold test data revealed several instances of within-speaker differences in pronouncing certain

Urum vowels. Table 6.6 shows four instances of a particular vowel being marked as significantly

non-overlapping across two conditions. For example, the cell for male speaker A03 /a/ was marked

with n=189. This meant that A03 uttered 189 /a/ vowels, and his F1×F2 values for /a/ in Urum

words from monolingual Urum utterances were significantly different than his F1×F2 values for
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Spkr a e i o u y œ æ W

A01 X
A03 X X X

A02
A07 X
B08 X
B11
B16

Table 6.7: The best-performing acoustic model (Russian MFA adapted on Urum + CS 94m) yielded
3 true positives (shaded X), 3 false positives (unshaded X), and 1 false negative (shaded empty cell).

Spkr a e i o u y œ æ W

A01 X
A03 X X X X

A02
A07 X
B08
B11
B16

Table 6.8: The worst-performing acoustic model (trained on the CS 47m partition) yielded 2 true
positives (shaded X), 4 false positives (unshaded X), and 2 false negatives (shaded empty cells).

/a/ in Urum words from code-switched utterances. The same can be said for speaker A03’s /o/

(n=57), speaker A07’s /a/ (n=13), and speaker B16’s /a/ (n=20).

6.6.3 Results from automatic alignments

Second, we calculated Pillai scores from the output of the best-performing and worst-performing

models and compared these to the gold scores (Tables 6.7-6.8). From the best-performing model,

the Russian MFA model adapted on the Urum + CS (94m) data, it found 6 instances of significant

non-overlap. 3 out of the 4 gold instances were correctly identified (i.e., 3 true positives and 1 false

negative), while producing 3 spurious significant findings (i.e., 3 false positives). From the worst-

performing model, trained on the CS (47m) partition, it produced less congruent findings: only 2

out of the 4 gold instances were correctly identified (i.e., 2 true positives and 2 false negatives), with

4 spurious significant findings (i.e., 4 false positives). We used the phonR package in R (McCloy,
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Figure 6.3: These plots reflect the first two formants (in Hz) for three of the nine Urum vowels,
/a, i, o/, for male speaker A03. Clockwise from the top-left are formants extracted from the gold
alignments, the best model (Russian MFA adapted on Urum + CS 94m) output, and the worst
model (CS 47m) output. Vowel labels are positioned at means, and ellipses cover one standard
deviation away from the mean.
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2012) to plot vowel ellipses for /i, a, o/ for male speaker A03, over the two language conditions,

and across the three types of output (Figure 6.3). The gold plot reflects our findings that /a/ and

/o/ were significantly different between Urum and CS environments while /i/ was not. The best

and worst model, however, show the ellipses increasingly diverging compared to the gold. Both

models found spurious differences for /i/, and although /a/ visually appears significantly different

for the worst model, it was a false negative.

Essentially, running our vowel overlap analysis on the alignments from the automated systems

did not yield the same findings as from the gold alignments. Output from the best- and worst-

performing models tended to hallucinate more vowel disparities than were found for the gold out-

put. However, we observed that the best model’s vowel disparity predictions more closely aligned

to the true findings than the worst model’s. The difference between these two models’ alignment

performances was 11% for precision and 7% for accuracy, but these percentages were uninter-

pretable. This case study helped interpret the broad metrics to reveal the nuances of alignment

performance, as the downstream output yielded different conclusions.

6.7 Conclusion

This work tested methodologies of incorporating code-switched data in acoustic model training and

alignment in a low-resource, field data scenario. We tested the inclusion of Urum–Russian code-

switched utterances in training acoustic models to align Urum phones, and found that it was helpful

to keep the code-switching to produce a larger train set. The maximally trained-from-scratch model

performed roughly on-par with a pretrained Russian model adapted to the same field data. If one is

fortunate to have 90-some minutes of transcribed data, that is plenty to train models from scratch.

Otherwise, utilizing a large, pretrained model performed reasonably when adapted on target data.

In order to functionally assess the quality of the systems, we tested our best and worst systems’

alignment outputs against the gold alignments to answer a bilingual phonetics question. Calcu-

lating Pillai scores across formant values for individual speakers, we discovered that certain Urum

vowels for several speakers were pronounced significantly differently in monolingual Urum utter-

ances than in code-switched utterances. Although the best acoustic model yielded more similar
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results to the manually fixed gold alignments than the worst acoustic model, none of the auto-

matic alignments were suitable for reaching conclusions for this particular research question. We

recommend manual adjustment of phone boundaries when conducting phonetic analyses whose

measurements are highly influenced by segment durations.

As future work, it would be beneficial to this research community to conduct a survey study

with qualitative and quantitative statistics on the prevalence of code-switching across field data

repositories. How are multiple languages used by the elicitors and by the community members of

the language being documented?

Further research could also aim to extend the study of phonetics and phonology for code-

switched language more broadly. Our case study only scratched the surface to discover the nature

of shifting Urum vowel qualities depending on the languages present in that utterance. It would

be interesting to discover if the significantly different Urum vowel formants were becoming more

Russian-like when surrounded by Russian context, similar to findings on Korean–English by Seo and

Olson (2024). Cross-linguistic interference or transfer could be in effect and is worth investigating.

Limitations

When conducting our regression analyses or case study, we did not take into account code-switching

properties at the syntactic or prosodic level. It would be interesting to factor into account whether

the code-switched utterance was inter-sentential or intra-sentential (i.e., mixing languages at phrase

boundaries or within phrases). When calculating boundary differences, examining how close an

Urum word was to a Russian word could have provided useful information. Prosodic factors such as

speech rate and pitch would also add insight as, anecdotally, prosody was at times visibly different

near the language switch points.

The Urum dataset from the DoReCo repository used in this work was particularly well-annotated

for both Urum and Russian. However, the quality and quantity of transcriptions here may not

represent other field data repositories, and replication of our findings on other datasets may be

challenging.
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Ethics statement

The dataset in this study has been made publicly available for download and research use. Speech

data that is public carries inherent potential harms for misuse in downstream tasks.

Particularly for our methodological approach of including code-switched speech or the language

of broader communication in the analysis of field data, we advise some caution. The speech from

the non-target language may have been meant to be ignored and not recorded. If sections of

the speech data were not explicitly transcribed, they may not have been intended to be used for

analysis.

Postlude

This chapter ties together methods and themes from the previous three contribution chapters. We

applied the corpus phonetics pipeline to field data and expanded our use of diverse data to include

code-switched speech. With respect to RQ1, it is viable to include code-switched utterances, rather

than ignore them, for the acoustic model training and forced alignment of targeted low-resource

speech data. It is also beneficial to use a pretrained model from the language of broader communi-

cation (Russian in this study) for the acoustic modeling of the target language (Urum in this study).

With respect to RQ2, we found that relying on automated processes alone would have degraded

the precision of a manually-conducted phonetic analysis. A corpus phonetics analysis using pho-

netic measures taken from automatic alignments did not produce the same analysis results as using

manually-annotated alignments. We further discuss the theme of trusting automation in the midst

of data diversity in Section 7.2.1.
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Part III

Resolution

95



CHAPTER 7

Conclusion

We first summarize what we learned and our contributions as they relate to the original research

questions from Section 1.2. Then we connect the takeaways from this dissertation to broader

themes across linguistics and speech technology. This discussion includes avenues for future direc-

tion.

7.1 Summary

RQ1 Methodology: What methods are viable for processing diverse speech corpora within

the corpus phonetics pipeline?

Each contribution chapter used automated systems to process diverse speech corpora. Chapters 3

and 4 applied grapheme-to-phoneme (G2P) systems, forced alignment, and formant measurement

tools to process multilingual read speech datasets. We learned that these tools and pipeline are us-

able for studying phonetic typology at a broad level. From an audit of outlying vowel formants, we

also learned that errors can occur at various stages of the pipeline. Factors including a language’s

sound system, speaker idiosyncrasies, dataset quality, and choice of automated pipeline systems can

all impact the data results. In Chapters 5 and 6, we focused on field data from language documen-

tation settings and specifically manipulated the G2P output and the acoustic modeling to improve

forced alignment. Generally successful was the strategy of cross-language acoustic modeling using

a large, pretrained model to adapt and align a small, targeted field dataset. Additional strategies

were only somewhat useful, including the broadening of phone classes for the Panãra dataset and

the inclusion of Russian code-switched speech in the Urum dataset.
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RQ2 Impact: How much can one rely on automated processes to obtain interpretable pho-

netics answers?

Chapter 4 demonstrated, through an audit of outliers in a pipeline of processed read speech, that

errors and variation could occur at many levels with varying impact on the downstream output. At

the highest level, transcripts that did not match the audio or were retrieved incorrectly (e.g., by

sentence-level speech-to-audio alignment) caused the biggest issues. Alignment errors and formant

tracking errors were also problematic. When the data quality was lower, these transcript and align-

ment errors were more abundant; when the data quality was higher, outliers were more attributed

to smaller issues of formant tracking errors and linguistic variation. In the case of low data quality,

we found it unreliable to use automated processes in the corpus phonetics pipeline.

In our investigation of acoustic modeling of code-switched Urum–Russian in Chapter 6, we an-

swered this impact question directly. We calculated Pillai scores on formants from Urum vowels

spoken in monolingual Urum utterances vs in code-switched Urum–Russian utterances, predict-

ing that Urum vowels in code-switched contexts would be realized significantly differently from

monolingual contexts. We answered this question with manually-annotated “gold” alignments, and

found that the scores and conclusions derived from our automatically aligned segments were dif-

ferent from the gold version. While our best acoustic model yielded closer conclusions to the gold

version than the worst acoustic model, none of these outputs were suitable for reaching conclusions

on this particular research question.

7.2 Broad themes and future directions

7.2.1 Trusting automation in the face of diversity

With respect to RQ2 above, perhaps we erred more conservatively in saying that output from

automated corpus phonetics pipelines is unreliable. Automation always introduces some levels

of error, and the question is more so—what is our threshold of acceptability? To arrive at an

acceptable state, where and how much might we need to intercede in the pipeline with any manual

edits? For the Panãra and Urum field datasets, we obtained gold phone segmentations by first
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utilizing G2P and forced alignment, then manually editing the boundaries in Praat. This process is

commonly used in phonetics research and is an effective use of automation combined with human

intervention. However, there is a tradeoff of resources between doing manual edits and being able

to process data more quickly. One of the aspects of diverse data is that there is either not much

available data or not many transcriptions or supervised labels for that data. If we are building

technology for a low-resource language variety, it may be worth adding more manual edits in the

pipeline as there is not much data to begin with.1

Another aspect of diverse data is that technology often treats it differently than standard data.

We encourage researchers to carefully examine the data and discern what the models treat as ac-

curate and inaccurate. As we discussed in Chapter 4, non-standard speech, or speech that was

unaccounted for in the assumptions in the pipeline, might be classified as outlying or erroneous.

It is important to distinguish between valid variation outliers—because the data reflects diverse

people—and outliers that resulted from technical processing errors. In work that examined the

many data partitions to form a large English language model (C4), Dodge et al. (2021) found that

pre-processing algorithms frequently removed data partitions from low-resource varieties (e.g., text

in African American English) and about minority individuals (e.g., text discussing LGBTQ+ iden-

tities). This falls in line with growing research on the discovery that data processing pipelines for

large models can exacerbate existing power inequalities in society (Bender et al., 2021).

Therefore, while we embrace automation, it is still important to be cautious with it. We en-

courage future research to focus on developing technology to work with non-standard speech data,

especially types we have not investigated in this dissertation such as tonal language varieties, child

speech, and speech disorders. In doing so, we invite users of this automation, whether corpus pho-

neticians or speech technology developers, to consider the benefits of manual audits. With regards

to the idea of a “robot phonetician” or a phonetician’s “robot assistant” (Liberman, 2019), we en-

courage the latter concept in order to prevent technology (without human intervention) from doing

harm such as removing diverse data partitions in Dodge et al. (2021). A key to trusting automation

in these scenarios is knowing that a human has approved the work of the “robot assistant.”
1Conversely, it could be harder to obtain manual edits if there are not as many speakers of that variety to verify the

work. It can be costly for field linguists to consult experts of the language for checking transcriptions.
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Lastly, if we aim to celebrate the diversity of people and cultures that these languages repre-

sent, it is extremely important for linguistics research (and therefore in our case, computational

linguistics research) to align with the goals and needs of the communities and people that the re-

search concerns. Work by Levow et al. (2017) shows how dialogue between language community

members and researchers can inform directions for future technologies and language applications

to support language documentation (for a detailed overview of possible directions, see also van

Esch et al., 2019).

7.2.2 Representing sound units

Another theme that this dissertation touches on is: What is a good representation of a speech unit

that is faithful to the acoustics yet generalizable (across that language variety, across speakers,

or across languages)? This question is important for both speech technology and linguistics. In

line with what we classified as a Linguistic Variation in Chapter 4, we discovered an unanswered

question of what we should do when the acoustic-phonetic realization of a sound does not match

the transcription because of valid linguistic variation. This could occur for a number of reasons

including: (1) the transcript was at the phonemic level but the spoken sound was a different

allophone of that phoneme; (2) the speech was reduced (e.g., the speaker said “wanna” instead

of “want to”); (3) there are dialectal or idiosyncratic variations in the speakers; etc. What would

happen if the phone transcription was more specific, allophonic, and faithful to the acoustics?

Perhaps it would perform better on the data, but that phone set may lose generalization to newer

or different data, as there is a risk of over-fitting to that trained dataset or variety.

For linguistics research, the phonetics-phonology interface has been a delicate balance of ac-

knowledging that phonology is not strictly discrete and that phonetics is not strictly continuous

(Cohn, 2007). In Chapter 5, we broadened phone categories, collapsing several sounds that were

similar in place and manner of articulation, and the results were mixed. We believe that broaden-

ing sound classes achieved small performance gains in cases where there was very little training

data per phone. Once more data was present, it was better to retain specificity (e.g., that /o/ and

/u/ are distinct phones). This approach had the appeal of being generalizable across languages,
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which is applicable for cross-language or multilingual acoustic modeling. However, it was clear

that modeling specificity was important as well. Perhaps data quantity could help discern where in

the spectrum of phonetics we can afford to be discrete. In other words, we can broaden categories

if the data is limited, but then make it more specific when the data is more plentiful.

An avenue for future work related to sound representations is to pursue phoneme recognition.

Phoneme recognition tools have a potential for aiding the transcription process in language docu-

mentation, especially for oral languages that do not have writing systems (Bird, 2021). It would be

interesting to analyze if phoneme recognition tools could also help field linguists in determining the

phone inventory of their language varieties of interest. As we observed in Section 4.6.2, linguists

on PHOIBLE did not agree on the vowel inventory for Hausa (Moran and McCloy, 2019), and the

formant data indicated that vowels had differing realizations from the given labels. In general,

phoneme inventories vary widely for many languages due to both systematic and unpredictable

reasons (Anderson et al., 2023). Perhaps an automated system could provide alternative inventory

suggestions during the language documentation process, as well as offer systematic choices when

defining phoneme inventories cross-linguistically.

As computer scientists continue to innovate on speech technologies such as acoustic modeling,

forced alignment, and phoneme recognition, it will be important to consider the differences be-

tween modeling acoustic contrasts vs. linguistic contrasts. Phoneme inventories are defined based

on the mental representation of sounds and how they contrast, instead of on the pure acoustics. Be-

cause machine learning is by nature empirical, there may be an over-emphasis on modeling speech

output functionally as opposed to the speech processes mentally. In the possible future scenario

that phoneme recognition technology is “perfected,” linguists will still need to make decisions on

the accuracy of those phonemes based on speakers’ perceptions and the appropriateness of the

granularity of the recognized sounds.

7.2.3 Utilizing linguistics in language technologies

A goal of this dissertation has been to use language technologies to further scientific research on

spoken languages. We might now ask the reverse question if there is a benefit that phonetics
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research has on technology. With the rise of speech and language technologies and large systems

that can perform at-par with humans on certain tasks, we believe there is still a need for linguistics

to inform these systems.

Opitz et al. (2025) argued that linguistics contributes to language technologies by providing

curated resources, evaluating and interpreting models, adding critical insights in low-resource set-

tings, and allowing the technology to contribute to meaningful language science discovery rather

than to purely commercial applications. In a perspective paper, Yang et al. (2025) emphasized the

need for language technologies to have social awareness—that is, for systems to take social con-

texts into account. Their goal is for technology to interact responsibly with human society. Towards

this goal, computer scientists need to collaborate with experts in other domains such as linguistics,

psychology, and sociology.

Following these recommendations, there are several pathways for phonetics research and lin-

guistics to improve speech technology. First, linguists can aid in curating speech corpora that it is

high quality and covers diverse language varieties, speakers, speech styles, and recording environ-

ments. Second, linguists can make sense of the output that large models are producing and discover

patterns from their output. If such patterns reflect human linguistic processes, this could contribute

to scientific discovery, as we found in the outliers of vowel formants in Chapter 4. Third, linguists

can provide creative methodologies to design speech technologies that follow linguistic theory,

such as our phonetic granularity exploration in Chapter 5. We encourage research to continue

along these lines and for linguistics and language technology to not only coexist but complement

one another in a symbiotic relationship.
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